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The usual formula for transition probabilities in nonrelativistic quan tum me- 
chanics is generalized to yield conditional probabilities for selected sequences of 
events at several different times, called "consistent histories," through a criterion 
which ensures that, within limits which are explicitly defined within the formal- 
ism, classical rules for probabilities are satisfied. The interpretive scheme which 
results is applicable to closed (isolated) quan tum systems, is explicitly indepen- 
dent of the  sense of time (i.e., past and future can be interchanged), has no need 
for wave function "collapse," makes no reference to processes of measurement  
(though it can be used to analyze such processes), and can be applied to 
sequences of microscopic or macroscopic events, or both, as long as the 
mathematical  condition of consistency is satisfied. When applied to appropriate 
macroscopic events it appears to yield the same answers as other interpretative 
schemes for s tandard quan tum mechanics, though from a different point of view 
which avoids the conceptual difficulties which are sometimes thought to require 
reference to conscious observers or classical apparatus. 

KEY WORDS: Joint probabilities; measurements; quantum mechanics; 
time reversal; wave function collapse. 

1. INTRODUCTION 

In this paper we introduce an extension of the standard transition probabil- 
ity formula of nonrelativistic quantum mechanics to certain situations, we 
call them "consistent histories," in which it is possible to assign joint 
probability distributions to events occurring at different times in a closed 
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system without assuming that the corresponding quantum operators com- 
mute. The extension, which contains the usual transition probabilities as a 
special case, appears to be useful in throwing a new light on some of the 
well-known conceptual difficulties which arise in various interpretations of 
quantum mechanics. 

In essence, nonrelativistic quantum mechanics consists in solving the 
Schr6dinger equation and giving a physical interpretation to the solutions 
(including boundary and initial conditions). The former is a mathematical 
problem about which there is little disagreement. The latter has given rise 
to an extended controversy which is far from being resolved. 

Most physicists accept the necessity of giving some sort of probabilistic 
interpretation to wave functions, and it is probabilities which in practice are 
compared with experimental results. However, quantum probabilities seem 
to differ in important respects from their classical counterparts. For exam- 
ple, every textbook gives the formula for calculating "the probability 
distribution" for the eigenvalues of any self-adjoint operator A, given a 
wave function or density matrix. But given two such operators which do 
not commute, the usual formalism gives no natural way of calculating a 
joint probability distribution of the two sets of eigenvalues. A related 
phenomenon is that a straightforward application of procedures which are 
perfectly valid for classical probabilities (e.g., as employed in classical 
statistical mechanics) can give wrong answers in the quantum case. Thus 
the probability of a quantum particle arriving at some distant point after 
being diffracted through a double slit cannot (in general) be calculated by 
first determining the probabilities that at an earlier time it passed through 
each of the two slits, and then the probabilities that it will reach the point 
in question from each of the two slits separately. Hence if probabilistic 
ideas are to be applied in interpreting quantum mechanics, they must either 
differ from classical probabilities, or their application must be restricted to 
special circumstances, or both. 

A large and influential body of opinion, which can with some justice 
be considered the "'mainstream" in modern physics, holds that these special 
circumstances are related to measurements: one can only speak sensibly 
about the probabilities of physical quantities which are, or have been, or 
could be measured. While a study of measurements has certainly produced 
significant insights into the nature of quantum mechanics, the use of 
"measurement" as a fundamental interpretive concept runs into difficulties. 
The most severe, in our opinion, is the fact that reference to measurements 
provides no way of interpreting what goes on in a closed (or isolated) 
quantum-mechanical system, whereas it is precisely to such a system, rather 
than to an open system occasionally or continuously perturbed by a 
quantum environment during "measurements," that the Schr6dinger equa- 
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tion can be applied, at least in its usual form. The other difficulties which 
sometimes emerge from an interpretation based on measurements (the 
absence of invariance under time reversal, the problem of "wave function 
collapse," the need for a "conscious observer," etc.) are, we believe, more 
or less direct consequences of the problem just mentioned. (Further discus- 
sion will be found below in Section 7.) 

By contrast, the consistent history approach of this paper assigns 
probabilities to certain sequences of events in a closed system. These 
sequences are selected by a mathematical consistency criterion making no 
reference to measurements, and can include either microscopic or macro- 
scopic events, or both. The interpretive scheme is explicitly invariant under 
time reversal. Wave functions and wave function collapse are mathematical 
tools (frequently rather convenient ones) for obtaining answers to certain 
physical questions which can be equally well answered (though perhaps not 
as conveniently) by the use of other tools. On the other hand, there is no 
appeal to "hidden variables," or anything of that sort. Indeed, consistent 
histories can very well be thought of as an extension and (we hope) 
clarification of what is, by now, a "standard" approach to quantum 
probabilities (Section 2.3), with the latter disentangled from an unnecessary 
conceptual attachment to measurements which is in any case ignored by 
many physicists when they are actually doing quantum calculations. Mea- 
surements themselves can be studied within the consistent history frame- 
work by including the measured device along with the system being 
measured in a single closed quantum system, and their study from this 
perspective yields a number of useful insights. 

The basic definitions required for the consistent history approach and 
formulas for the associated probabilities are given in Section 2, with some 
of the more technical details in Appendix A. This machinery is then 
applied to analyze two gedanken experiments, Sections 3 and 4, with results 
which are, we believe, interesting and even somewhat surprising; the reader 
must judge whether they are "right." Section 5 is a much more abstract 
discussion of a certain type of idealized measurement from the consistent 
history perspective. Throughout Sections 3, 4, and 5, but most explicitly in 
5, we have adopted the strategy of focusing on what we feel are the features 
of nonrelativistic quantum mechanics which lie at the very heart of the 
conceptual difficulties which an interpretation must face, namely, (i) the 
use of (in general) noncommuting projection operators to represent physical 
events, and (ii) a development in time described by unitary transforma- 
tions. Our goal is to make physical sense out of this structure, and if at 
times other features are ignored or subjected to a brutal oversimplification, 
this is done to avoid discussing items which are not central to the main 
conceptual issues. A brief summary of the consistent history approach 
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along with comments on extensions and possible applications will be found 
in Section 6. Finally in Section 7 there is a discussion of s o m e  of the 
previous literature on quantum interpretation and its relationship to the 
consistent history point of view. 

2. CONSISTENT HISTORIES 

2.1. Events and Histories 

We shall consider a closed (i.e., isolated) quantum-mechanical system 
S of finite but arbitrary size. The basic interpretative unit is an "event," 
which is to be thought of as a particular state of affairs existing at a 
particular time; for example, "the hydrogen atom is in its ground state," or 
"the needle of the meter points at 3." We assume that an event E is 
associated with an orthogonal projection operator, for which we use the 
same symbol, acting on the Hilbert space S used to describe the system of 
interest. Eigenvectors of E with eigenvalue 1 are to be thought of as states 
of the system for which this event occurs (or "exists"), those with eigen- 
value 0 as states for which it does not occur, or for which the event E '  
standing for "not E "  occurs; the two projections are related by 

E ' =  1 - E (2.1) 

A "history" H of S is a sequence of events 

D---) Ex---> E 2 - ~ .  . . ---~ En--~ F (2.2) 

occurring at a set of times 

t o < t 1 < t 2 �9 �9 �9 < t n < tf (2,3) 

where t o is the time of the initial event D, and tf  that of the final event F. 
The strict inequalities in (2.3) can be replaced by < provided no  t w o  

n o n c o m m u t i n g  p r o j e c t i o n  o p e r a t o r s  a r e  a s s i g n e d  to t he  s a m e  t i m e .  (It is 
sometimes convenient to use a density matrix in place of a projection 
operator for D or F, but we shall not do so in this paper.) 

Rather than an individual event, it will frequently be convenient to 
consider an e v e n t  s e t  [Eft] at the time t~. By this we shall mean that there is 
a decomposition of the identity operator, 

Mk 
1 =  ~ E ;  (2.4) 

~ = 1  

in terms of orthogonal projections satisfying 

EfE  (2.5) 
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(Note that the superscript is a label, not an exponent.) Then the set [E~] 
consists of each of the Eft along with all sums of two or more distinct E~, 
including the identity itself; thus a total of 2 Mk - 1 projections. The simplest 
situation is that in which M~ = 2, in which case the event set consists of E, 
E' ,  and 1 in the notation (2.1). The family J -  of histories 

D - ~ [  E ; ] - ~ [  E ~ ] - - >  . . . [ E : ] - ~  F (2.6) 
consists of all histories H of the form (2.2), where Ej. is a member of the 
event set [ET]. 

2.2. Weights, Consistency, and Probabilities 

We assume that the time development of S is governed by a unitary 
transformation U(t', t) which maps states at time t into those at time t'. We 
make the usual assumptions that U is continuous in both arguments and 
that it satisfies 

U(t ' ,  t')U(t', t) = U(t ' ,  t) (2.7) 

and 
U(t, t) = 1 (2.8) 

Thus in particular U(t,t') is the inverse of U(t',t). In addition to the 
"Schr6dinger" operators in (2.2) it is convenient to define the correspond- 
ing "Heisenberg" operators 

4. = U(tr,tj)EjU(tj,tr) (2.9) 

referred to a particular reference time t r which is independent of j .  The same 
formula defines D and F (with tj replaced by to and tf, respectively) in 
terms of D and F. 

The weight w associated with a history (2.2) is defined by (Tr = trace) 

w(D A E, A E 2 A  " " " E .  A F )  

= Tr [ /~= /~_ , . . . / ~2E , / ) /~ , /~z . . .  ~ _ , / ~ [ "  ] (2.10) 

where " A "  should be read as "and." The right side does not depend on t r, 
all references to which may be eliminated by inserting the specific time 
transformations: 

w( D A E~ A ' ' '  E nA  F)  

= Tr[ U(tf, tn)E n U(tn, t=_ 0 ' ' "  

X U(t2, t l)E l U(tz,  to)DU(to, t~)E 1U(ti, t2) . .  �9 

X U(t ,_ ,  , t , ) E , U ( t , ,  (r)F] (2.11) 
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In the case of an infinite-dimensional Hilbert space we shall always assume 
that the trace of either D or F is finite, so these equations make sense. 

Next define the conditional weight W by the formula 

W ( E  l A E 2 A . . .  EnID A F)  = w(D A E 1 A ' ' "  E n A F ) / w ( D  A F)  

(2.12) 

provided 

w(D A F)  = T r [ / ) F ]  = Tr[ U(t f , to)DU(to , t f )F ] (2.13) 

does not vanish. In certain respects W ( A ] B ) ,  the "weight of A given B," 
behaves like a conditional probability of A given B (e.g., it is real and 
nonnegative), but in other respects it does not (e.g., it can be greater than 
1). To get around this difficulty, which is a quantum effect in the sense that 
it arises from the noncommutativity of the operators in (2.10), we introduce 
the concept of a consistent family. The family 3 -  of histories (2.6) will be 
called consistent when for every k, 1 <~ k <<. n, and every history ~f~ in 3 -  it 
is the case that 

w(D A E I A . . . E k A . . . E n A F)  

= ~ ' w ( D  A E A . . .  Eft A . . .  E.  A F )  (2.14) 

where ~]' on the right side means a sum over precisely those projections 
which make up E k on the left: 

/ a 

Ek = 2 E~ (2.15) 
C~ 

When (and only when) these consistency conditions are satisfied, we shall 
refer to the weights W appearing in (2.12) as "probabilities," and replace the 
symbol W(A I B) by P(A I B ), the probability of A given B. This terminology 
is appropriate, as shown in Appendix A, when the events in question are all 
associated with a single consistent family, and in this case the formulas can 
be manipulated as in classical probability theory. For example, 

P(E~ID A E2A F ) =  P ( E  1A E2ID A F ) / P ( E 2 I D  A F)  (2.16) 

P(E2[ D A F )  = 2 P ( E ~  A Ezl D A F)  (2.17) 

are correct formulas provided 

D -~[E{ ~ ] ---> [ E~ ] ~ F (2.1g) 

is a consistent family. [The left side of (2.16) is, of course, only defined 
when P(E2]D A F) is positive; in what follows we shall not always take 
the trouble to make an explicit qualification of this sort.] In Appendix A it 
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is also shown that (2.14) is equivalent to 

R e T r [ / ~ . . . / ~ . . . E I / 5 / ~  I . . . E ~ . . . E n F ] = 0  (2.19) 

for every pair a </3, where Re denotes the real part. 
In the arguments of P( ] ), though not that of w ( ) ,  we shall feel free 

to write the events in other than the temporal order, when that is conve- 
nient. The symbol H will be used for the string D A E 1 A �9 �9 �9 En A F as 
well as for (2.2), and in the case where consistency is fulfilled the left side of 
(2.12) can be written as P ( ~ ] D  A F), since P(A A B I B )  is the same as 
P(A ]B). However, it is to be understood that there is a definite temporal 
order associated with a history, and weights of the form (2.12) are always 
defined with the operators inside the trace in (2.10) in the appropriate 
temporal order. (If some of the operators commute, it may be possible to 
calculate the weights with the operators in a different order and get the 
same answer.) 

To avoid confusion, we note that (2.12) or a very similar formula 
occurs in the "orthodox" interpretation of quantum mechanics for se- 
quences of events which do not satisfy any consistency condition. However, 
its physical interpretation is in general quite different from that appropriate 
for (2.12) applied to a consistent history. See the discussion related to 
Equation (7.1) in Section 7.1. 

A particular history of the form (2.2) will be called consistent provided 
the smallest family of histories in which it can be embedded is consistent; 
otherwise it is inconsistent. This smallest family is that in which for each k 
the decomposition (2.4) is of the form 1= E k + E~. It is important to 
notice that if a history ~ is consistent, the corresponding conditional 
probability (2.12), P(~PID A F), does not depend on the family of consis- 
tent histories in which ;g~ happens to be embedded for a particular 
discussion; this is obvious from the fact that the right side of (2.12) depends 
only on the events which make up ~'~. The consistency of a particular 
history (2.2) can be checked using (2.19) in the following form. Let 
denote 4 or r  or 1. Then consistency is equivalent to the demand that for 
every k between I and n, and every possible choice for the Gj with j r k, 

Re T r [ G n . . . E k . . . G , D G ~ . . . E s  = 0  (2.20) 

The final event F was introduced as one of the conditions in (2.12) 
partly as a matter of convenience and partly to demonstrate that this basic 
interpretive formula along with the consistency conditions is invariant 
under time reversal in the sense that the roles of D and F can be formally 
interchanged provided the order of events is reversed. Thus the invariance 
of the trace under cyclic permutation means that (2.10) is the same as 

Tr[ /~l /~2. . .  E~/~ /~ . . . /~1 / ) ]  (2.21) 
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It is of course possible to study histories in which the final "event" is the 
dummy F = 1 (or in which the initial D = 1). In this case we omit F on the 
right side of the vertical bar and write W ( . . .  [D), or P ( . . .  [ D) in the 
consistent case. Note, however, that in the consistency conditions (2.14) the 
events D and F play a distinguished role. Thus, the consistency of (2.2) in 
the case F = 1 implies the consistency of the history 

D ~ E l -+ E 2 --> �9 �9 �9 --~ E n_ l ~ En (2.22) 

in which E n plays the role of the "final event," but the consistency of (2.22) 
does not necessarily imply that of (2.2) with F = 1. 

The consistency of a particular history or family depends, in general, 
upon the choice of all of the events (including D and F)  or event sets. 
Consequently it is usually not possible to add a new event set to a 
consistent family and still satisfy the consistency conditions. When, how- 
ever, this is possible, we shall say that the family and the new event set are 
compatible (and, in the contrary case, that they are are incompatible). To be 

C~ more precise, a family ~ -  and an event set [A, ] at time t~ are compatible 
provided there exists a consistent family 3 - '  with the same D and F as J -  

~X which includes [A, ] and all the event sets of ~ .  This means, in particular, 
that t, must fall between t o and tl, and t N can coincide with one of the times 

~x associated with an event set in 3 -  only if all the projections in [A,] 
commute with all of those in the corresponding event set in 3 - ;  see the 
remarks following (2.3). In addition, ~ -  may be compatible with [A]] at 
time t~ and also with [B~] at time t~ without there being a consistent family 

c~ c~ which includes [A N ], [B~ ] and all the event sets of 9 - .  When, however, 
c~ such a family does exist we shall say that J is compatible with [A N ] and 

[B~] together. 
A similar terminology can be applied to a single history: A consistent 

history ~ is compatible with the event set [A]] if the smallest family 
containing #U is compatible with [A~], and ~f~ is compatible with the event 
A, provided this smallest family is compatible with the set {A,,A'~, 1). 
Comparable definitions apply for " ~  is compatible with A N and B, 
together," etc. 

The formal definition of consistency does not provide much physical 
insight into its meaning. The specific examples of Sections 3 and 4 will be 
helpful in supplying a certain amount of intuition. At this point it may be 
useful to remark that since the quantum phenomena which are troublesome 
from the point of view of classical probabilities typically arise because of 
the "interference" of quantum amplitudes, the consistency conditions (2.14) 
may be understood intuitively as the assertion that such interference effects 
are negligible so far as the events in ~ -  are concerned. Similarly, (2.19) may 
be interpreted as the assertion that there is no interference in the quantum 
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amplitudes propagating from D to F along the separate paths passing 
through E~ and E l ;  the significance of this will become clearer from the 
detailed argument beginning at (3.7) applied to the example of Section 3. 

Just as in optics one finds situations in which interference effects, 
always present in principle, can be ignored in practice, similarly in applica- 
tions of the consistency conditions there are cases in which small violations 
occur--the probabilities do not quite "add up"- -but  can be ignored. See 
the remarks in Section 3.3 below for a specific example. Given that 
nonrelativistic quantum mechanics cannot, in any case, be ultimately 
precise, and t h a t t h e r e  is typically a certain amount of ambiguity in 
defining projection operators associated with macroscopic events, there 
seems to be little point in worrying about violations which are small in 
some appropriate sense, though obviously this is a matter which deserves 
further study. 

2.3. The Standard Statistical Interpretation 

In the case of the family 

D ~ [ E ~ I  ~ 1 (2.23) 

the consistency conditions are automatically satisfied, and the interpreta- 
tion of W in (2.12) as a probability (conditional on the initial state D) is an 
accepted part of the usual quantum interpretation. In particular, if D and 
E 1 correspond to the (normalized) wave functions q0 and ~p, (2.12) yields the 
well-known transition probability 

P ( E  1 [ O ) = W ( E  1 I O ) = J(~l U ( I , ,  t0)[~)? (2.24) 

We thus feel justified in referring to (2.12) applied to (2.23) as the 
"standard statistical interpretation of quantum mechanics," or "standard 
interpretation" for short. A slight generalization is to the case in which the 
Heisenberg operators at the common reference time associated with the 
different event sets [ E ~ ] . . .  [E2] and F in (2.6) all commute with each 
other: 

(2.25) 
^ A A A e?r= re? 

for al l j^and k (/> 1)^and all a and ft. In this situation, as also in the case 
A 

where D instead of F commutes with all the E 7 ,  the consistency condition 
is again automatically satisfied, since permutation of operators inside the 
trace alongwith (Ej) 2 = can be used to eliminate the "extra set" of E's 
preceding D on the right side of (2.10). We shall call (2.12) for this case the 
"generalized standard interpretation." Thus the interesting cases of consis- 
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tent histories which g,o beyond the "standard interpretation" are those in 
which the projection E corresponding to at least one event fails to commute 
with the other operators in such a way that it must still occur twice in the 
trace in (2.10). 

3. SCATTERING INTO TWO COUNTERS 

3.1. The Gedanken Experiment 

As a first application of the consistent history approach consider the 
scattering problem of Fig. 1. A wave packet ~b 0 represents a particle at time 
t o traveling toward a scattering center (regarded as a fixed potential) from 
which it emerges at a later time t I in the form of a superposition of two 
packets q~ and ~b, the first traveling toward a counter Ca and the second 
toward a counter C b. The counters are constructed to register the passage 
of a particle without significantly perturbing its motion, and at a later time 
t 2 the particle has passed through one or the other counter, resulting in the 
wave packets +~ and ~2 b. [In place of the scattering problem one could 
equally well imagine the decay of an unstable system, located at the 

Q 
% 

r  , 

-~B2 
q ] b  ~ --. 

I 

\ ~  1 / Co 

\ '%) 

Fig. 1. Idealized scattering experiment. The scattering center is the large dot and the counters 
are represented by rectangles. The particle wave packets are shown schematically by the cross 
hatched ovals. The regions A l ,  B 1 , etc. are explained in the text. 
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scattering center, with the emission of a single particle represented by the 
packet (~p~ + + b ) / ~ -  at time t~ .] 

As the consistent history approach is to be applied to a closed system, 
it is necessary to think of the particle plus the two counters as constituting a 
single quantum mechanical system. We suppose that at time t o the initial 
state D is the projection operator ]'I'o)('I'o[, where 'I" 0 is the wave function 

t = t o :  q '0  = ~oCaCb ( 3 . 1 )  

The time development given by the Schr6dinger equation transforms (3.1) 
into 

t = t," ~ ,  = (~;  + ~ ) C = C o / J g  (3.2) 

t =  t2: % = (~;Ca+Cb + +~~ (3.3) 

at these later times. Here C a stands for the wave function of this counter in 
an "untriggered" state, while Ca + is the wave function for a "triggered" 
state resulting from the passage of a particle through the counter; all other 
changes in the counter wave function, such as that which occurs between t o 
and t~, are ignored in this notation. A parallel notation is employed for 
counter b. Note that (3.3) is a plausible consequence of (3.2) inasmuch as 
+iCaCb should become a + a ~2Ca Cb at a later time: a particle passing through 
counter C~ triggers it without affecting counter Co, while one passing 
through C o does not affect C a. In what follows it will be convenient to 
suppose that the individual functions ~ ' ,  C a, Co + , etc. appearing on the 
right side of (3.1) to (3.3) are all normalized (norm 1). In (3.3) qz 2 is a 
typical example of what we shall call a "grotesque" wave function formed 
from the superposition of states corresponding to distinct macroscopic 
situations. 

3.2. Answers to Two Questions 

We shall now apply the consistent history approach in order to answer 
the following questions. Given the initial state D (corresponding to the 
wave function "I'o): 

1. If at time t 2 counter a is in the triggered state Ca + , what is the 
probability that at the earlier time t~ the particle was in the region A1 
(Figure 1)? 

2. If at time t 2 counter a is in the triggered state Ca +, what is the 
probability that at the same time the particle is in the region A2? 

The projection operator corresponding to the particle being in the 
region Aj at time tj, which we shall also denote by A j, corresponds to 
multiplying the particle portion of the wave function by a function which is 
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1 inside the region in question, and 0 outside. Thus, for example, 

AlXIt  1 = ~ t ~ / ~ -  = t~CaCb/~ 
(3.4) 

(remember that A] = 1 - A  0. We also need the projection operator Ka + 
corresponding to the event (which we denote by the same symbol) that 
counter a is in the triggered state Ca + at time t 2. It has the property that 

Ka+Ca+ = C~ + , / C C o  = 0 (3.5) 

The first of the two questions given above can be answered within the 
consistent history interpretation by calculating the conditional probability 
P ( A l [ D  A Ka +) using (2.12), with F =  K~ +,  provided the corresponding 
history 

O--> AI ~ K + (3.6) 

is consistent. To check consistency, we must show that 

ReTr[  U( t z , t l )A iU( t , , to )DU(to , t l )A ' ,U( t l , t2 )Ka+ ] = 0  (3.7) 

where (2.20) has been written in the "long" form corresponding to (2.11). 
To begin with, note that 

V( t l ,  to)DU(t o, tl) = Iq~,)(qSl[ = D, (3.8) 

in dyadic notation, where 't' 1 is given by (3.2), and D 1 is a convenient 
shorthand for the corresponding projection. Hence, using (3.4), 

= I % ) < ' I ' , 1  ( 3 . 9 )  A1DIA, l �89 ~ b 

and consequently we have 

u( t2 ,  t~)A 1D1AI U( t , ,  t2) = �89 L'I'~>~'t:~i (3.10) 

where 
a a -t- % +2co cb ,~  = ,,bc c + = , v 2  ~ b ( 3 . ! 1 )  

Thus the trace in (3.7) is equal to 
1 b + a 7(q'2]K, 1~I'2) = 0 (3.12) 

since Ko+~I "b = 0 [see (3.5)], and hence (3.7) is satisfied. 
Having checked consistency, we can use (2.12) to calculate the desired 

probability. The numerator can be computed using the same steps em- 
ployed to check (3.7), with A' l replaced by A 1 and q'~ by q'~. The final trace 
is equal to 

�89 (q,~lg~+ Iq,~) = �89 (3.13) 
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The denominator in (2.12) is given by 

(~2] Ka + 1't'2) = 1 (3.14) 

whence it follows, dividing (3.13) by (3.14), that 

P(A lID A K~ +)  = 1 (3.15) 

A completely analogous calculation shows that D ~ B~ ~ KA + is consistent 
and that 

P(B, I D A Ka +)  = 0 (3.16) 

In words, (3.15) and (3.16) mean that given that counter a is in the 
triggered state at time t 2, we can be certain that the particle was in region 
A~ at the earlier time t~, and that it was not in region B I. 

To answer the second question we need to compute P(Azl D A K~+). 
Since A 2 and Ka + refer to atomic positions in different spatial regions at the 
same time (K~ + can be thought of as associated with the position of a 
pointer which is part of counter a), these two projections commute, and 
thus (Section 2.3) the history D ~ A 2 ~  K + is automatically consistent. A 
straightforward calculation using (2.6) then yields the result 

P(A2ID A K~ + ) --- 1 (3.17) 

and by similar reasoning we obtain 

P(B2ID A Ka+) = 0 (3.18) 

In words, if counter a is in the triggered state at t ime t2, then the particle is 
certainly in region A 2 and definitely not in region B 2 a t  this time. 

3.3. Comments on the Calculations of Section 3.2 

It is encouraging that the consistent history approach yields "phy- 
sically obvious" answers to questions 1 and 2 of the previous section, and it 
is worthwhile examining in some detail how it does so. We shall concen- 
trate on question No. 1, as it is more interesting from the view of quantum 
interpretation, and add some remarks on question No. 2 at the end. 

First it is worth noting that the consistency check for the history (3.6) 
is nontrivial, since -all does not commute with /) or with /s (see the 
argument in Appendix B). This means that in order to answer question 1 
within a probabilistic framework applied to a closed system, it is necessary 
to go beyond the standard probabilistic interpretation of quantum mechan- 
ics (Section 2.3). Consistent histories represent one such extension: there 
may well be others. But in any case some extension is needed if one is to 
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answer question 1. Second, note that in the consistency check, in particular 
in writing (3.4), we implicitly used the fact, suggested by the sketch in 
Figure 1, that the wave packet ~ vanishes outside the region A 1. It might 
be more realistic to assume that instead of vanishing, +~' has a very small 
amplitude outside A 1 . In that case one could expect to find a contribution 
to (3.7) arising, in effect, from an interference between the part of +] 
outside and the part inside A 1 a s  they propagate forward in time, and thus 
a small violation of the consistency condition. This possibility has already 
been noted in Section 2.2, and the present example may help to indicate the 
sort of situation in which small ("negligible") violations of consistency 
could be tolerated without too great a concern about the physical interpre- 
tation. 

Next note that the consistent history approach provides an answer to 
question 1 without "collapsing wave functions": the answer is obtained 
from a conditional probability which results from evaluating the traces of 
the type (2.11). It is nonetheless of interest to note that the procedure we 
employed for evaluating the numerator in (2.12) involved an operation 
which in many ways resembles the collapse of a wave function. Namely, in 
going from D 1 to A 1DIA l [see (3.8) and (3.9) for the corresponding steps in 
the consistency check] one in effect replaces "I" 1 by the "collapsed" function 
't'~/2- [see (3.4)]. Indeed, if D is a pure state, one can always visualize the 
process of calculating (2.11) as a series of "collapses" occurring at succes- 
sively later times. 

What this indicates is that consistent histories have at least some 
formal correspondence with interpretations of quantum mechanics involv- 
ing wave function "collapse" in one form or another (including the case in 
which the wave function is replaced by a density matrix) (see Section 7). 
However, the example under discussion also indicates important differ- 
ences. The collapse employed in calculating the numerator in (2.12) obvi- 
ously has nothing to do with measurements (though it can be connected 
with a sort of ideal "measurability"; see Section 5), since it occurs at a time 
t 1 before the particle has interacted with either of the counters. It in fact 
"occurs" as a result of using the mathematical apparatus of consistent 
histories to answer a particular physical question; given a different physical 
question, one would not in general carry out this particular "collapse." 

Despite the fact that the consistent approach is applied to a closed 
system, at no point in answering question 1 (or question 2) is" it necessary to 
prove an interpretation for the grotesque wave function "t~ 2 in (3.3). The reader 
may object that while this function is not "obviously" present in the formal 
apparatus of (2.12), it is implicitly present in that we have actually em- 
ployed it in evaluating the denominator in (2.12); see (3.14). True enough, 
but this was certainly not necessary. The fact that the interpretive ma- 
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chinery of the consistent history approach is independent of the sense of 
time, as noted in Section 2.2, means that in place of (3.14) we could equally 
well have evaluated (~t'ol/s I'I'o), with 

- ' , +  

Ka = U ( t o ,  t2)Ka + U ( t  2 , to) (3.19) 

the projection corresponding to K, + at the reference time t 0. This route 
dispenses of all mention of the grotesque wave function q'z, to be sure, at 
the price of introducing an equally or even more grotesque o p e r a t o r / s  
However, the point we wish to make is that within the consistent histories 
interpretive scheme there is no difference in principle between the two time 
directions, and for this reason, among others, it is rather unnatural to 
regard xIt 2 as somehow the unique "wave function of the universe" at t = t 2. 

Nothing in the previous remarks rules out the possibility of introducing 
the "grotesque" event 

G = I%><%1 (3.20) 

at time t 2 and incorporating it into some consistent history. Such histories 
do exist, and the consistent history approach will assign probabilities to 
consistent families of "grotesque" histories if that is what interests the 
theoretician. The point we wish to make is not that grotesque events are 
somehow ruled out by the consistent history approach (obviously they are 
not), but simply that they are not an essential part of interpreting what 
happens in an "ordinary" consistent history. 

Some further remarks may help in clarifying the role of wave functions 
in the consistent history approach. Any event associated with an operator 
Ej projecting onto a one-dimensional subspace can be associated with the 
corresponding unique wave function (apart from phase and normalization, 
which are not the point at issue), and if this event occurs at time 5 '  it is 
quite proper from the consistent history perspective to say that the system is 
completely described by this wave function at th& time. (In particular, there 
are no "hidden variables.") But even when this event does occur, the 
consistent history interpretation does not ascribe any corresponding unique 

A 
physical significance to the Heisenberg operator Ej (2.9) at times t~ earlier 
than or later than 5" True enough, such operators enter into expressions 
such as (2.10), but here the time t r is arbitrary, and if the system is 
somehow described at time t r by one of these operators, the question is: 
which one? To speak of a unique "wave function of the system," in the 
sense of "I" 2 at time t2, corresponds to giving a privileged role to /) at all 
times, and this seems neither necessary nor very natural from the consistent 
history point of view. 

As to question No. 2, the main point of interest is that it can be easily 
answered by the alternative route of "collapsing" the wave function 'I' 2 in 
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the sense of replacing the projection operator 1"I'2)('I'2] by the correspond- 
ing density matrix [see the definition in (3.11)] 

a a 1 b b �89 I%><%1 + = (3.21) 
using some justification such as that discussed in Section 7.2.t. [Presum- 
ably this collapse should be carried out just after the particle has finished 
interacting with (one of) the counters, but the result will in any case be the 
same at time t2. ] While this procedure works quite well for question No. 2, 
it is not obvious how to apply it in order to answer question No. 1. We shall 
have more to say about it, in the context of a slightly different problem, in 
Section 4.3 below. 

4. SPIN POLARIZATION MEASUREMENTS 

4.1. The Gedanken Experiment 

The problem of interest is the passage of a spin- l /2  particle through 
two successive spin polarization analyzers. Such an analyzer (Fig. 2) has 
three parts. First there is a region R 1 with a magnetic field gradient 
arranged so that a beam of particles entering from the left, along the + y  
axis, will be separated into two beams depending on whether the z 
component of spin S z is 1/2 or - 1/2 (in units of h). Next there is a pair of 
counters, one in each beam, which register the passage of a particle while 
producing a negligible perturbation of its motion and without disturbing its 
spin polarization. Finally another region R 2 of magnetic field gradient 
recombines the beams from the two counters into a single beam emerging 
on the right. We assume in particular that the construction is such that if a 
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Fig. 2. Schematic drawing of a spin polarization analyzer. The regions R I and R 2 of 
nonuniform magnetic field split and then reunite beams of particles with opposite spin 
polarization, while C a and C b are counters detecting particles passing through the separated 
beams. 
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particle with S z = 1/2 enters on the left, this polarization is preserved 
throughout its trajectory (upper dashed curve in Fig. 2), and the same is 
true for Sz = - 1/2 (lower dashed curve). By rotating the analyzer by 90 ~ 
about the y axis, it becomes an analyzer of the x component of spin 
polarization Sx. 

We shall treat the analyzers as quantum mechanical devices, with the 
following simplified notation for the corresponding wave functions. Let Z 
be the wave function for the S z analyzer before passage of the particle, and 
Z + and Z -  the functions resulting from the passage of a particle with 
S~ = + 1/2 and - 1/2, respectively. For the Sx analyzer the corresponding 
symbols are X, X + (S~ = 1/2) and X -  (S~ = - 1 / 2 ) .  The spin states of 
the particle will be denoted by a and fl for S z = + 1/2 and - 1/2, and ~, 
and 6 for S~ = 1 /2  and - 1/2, respectively, with phases chosen so that 

= (v + 8 ) / d - ,  /~ = (v - 8 ) / d -  
(4.1) 

= (~ + / ? ) / d - ,  8 = (~ - / ~ ) / ( f  

The part of the particle wave function associated with its position in space, 
in contrast to its spin, will be omitted, as we make no use of it in the 
following discussion. The transformation in the wave function of the 
particle plus analyzer when the particle passes through is given by 

a Z  --> a Z  +, f i Z  ---> f i Z  - (4.2) 
in the case of the z analyzer, and 

7X ~ ,/X +, 6X ~ 6 X -  (4.3) 

in the case of the x analyzer. 

4.2. Some Consistent Histories and Associated Probabilities 

Consider a situation, Fig. 3, in which a particle with initial polarization 
S x = 1/2 passes through a Z analyzer followed by an X analyzer, and let 
t 0, t~, and t 2 be times such that the particle is to the left of both analyzers, 

Fig. 3. 

t o  t t  t a 

Z X 
Particle path through two successive spin polarization analyzers, one for S z and 

one for 5~. 
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in between, and  to the right of both,  respectively. The  t ime deve lopment  to 
the total wave function, in ana logy with (3.1) to (3.3), is 

t = to: ' t '  0 = ~,ZX (4.4) 

t =  t l :  xIt I = ( o ~ Z + X +  ~Z-X)/~/2 (4.5) 

t = t 2 :  ' I ' 2 = ( , { Z + X  ++6Z+X - + T Z - X  + - 6 Z - X - ) / 2  (4.6) 

We  shall s tudy various histories which commence  at t o with the initial 
state D corresponding to 'I" 0 and  terminate  at t 2 with the event  F that  the z 
and  x analyzers are in the states Z + and  X +, respectively. The  intermedi-  
ate events will be of the fo rm Aj, the particle in state a,  and Fj, the particle 
in state 7 at the t ime 7" 

The  consistency of various histories and  the corresponding probabil i -  
ties can be worked  out by  the same methods  used in Section 3, and the 
details will be  found in Append ix  C. I t  turns out  that  bo th  of the histories 

D -~ A l ---> F (4.7) 

D -~ F 1 ---) F (4.8) 

are consistent, and  

e ( A ,  I D A F )  = 1 (4.9) 

P ( F ,  I D A F )  = 1 (4.10) 

In  words, (4.9) asserts that  given the initial state and  the fact  that  at the 
t ime t z the z and x analyzers are in the states Z + and  X +, one can be 
certain that  at the t ime tj when the particle was between the two counters  it 
had  a polar izat ion S z = 1 /2 ;  (4.10) is the assertion that  under  the same 
condit ions one can be certain that  S x -- 1 / 2  at  the t ime t I . 

The  s imultaneous validity of (4.9) and  (4.10) comes as somewhat  of a 
surprise, and  we shall discuss this in some detail in Section 4.3 below. 
However ,  it is well to note  at once that  the consistent history approach  does 
not allow us to combine  (4.9) and  (4.10) so as to deduce the consequence,  
obviously correct  for classical probabili t ies,  that  

P ( A  l A F~ I D A F )  = 1 (4.11) 

In  fact the histories (4.7) and  (4.8) are incompat ib le  in the sense (Section 
2.2) that  events in one cannot  be combined  with events in the other to fo rm 
a single consistent history. Indeed,  they cannot  even be combined  into a 
single history given (2.3) and  the remarks  which follow it, since Aj and F 1 
do not  commute .  To  get a round  this problem,  we introduce a second t ime 
t~. 1 which is slightly later than t 1 but  still before  the particle reaches the x 
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analyzer. Evidently the two histories 

D ~ A1.1 ~ F (4.12) 

D--~ FI.I--~ F (4.13) 

are both consistent. In addition (4.7) and (4.13) are compatible in the sense 
that the combined history 

D ---> A 1 ---> r ~  ---> F (4:14) 

is consistent (Appendix C), whereas 

D ~ F  1 -->A m ~ F (4.15) 

is inconsistent, so that (4:8) and (4.12) are incompatible. In addition 

P(A, A FI. ] ]D A F )  = I (4.16) 

in words, given the initial and final states, it is certain that S z = 1/2 was the 
case at one time and S x = 1/2 was the case at a slightly later time, provided 
both times were in the interval when the particle was between the counters. 

While (4.16) can be calculated directly using the definition (2.12), see 
Appendix C, it is worthwhile noting that it is also an immediate conse- 
quence of a standard probabilistic inference based on (4.9) and 

P(F1.1{D A F)  = 1 (4.17) 

which is the counterpart of (4.10) for the history (4.13). The reason why 
such reasoning is valid in this case, but that leading to (4.11) is not, is that 
(4.7) and (4.13) are compatible, which is the same thing as saying that both 
(4.9) and (4.17) refer to probabilities of events in the same consistent family, 
namely, the smallest family containing (4.14). 

Finally it is amusing to note that if Oj is the event Sy = 1/2 at time ~, 
then in an obvious extension of the previous notation, 

D---> AI--> @1.1---> F1.2 "-+ F (4.18) 

is a consistent history, and 

P(A 1 A O H A F1.2[D A F)  = 21- (4.19) 

We leave the verification of these assertions, as well as the question of what 
else might be consistently inserted between A 1 and 17~.2, as exercises to the 
reader. 

4.3. Discussion of the Results of Section 4.2 

We begin with (4.9), which asserts that S z = 1/2  at the time t~ when 
the particle is between the two analyzers, given D and F. Many physicists 
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would accept this result, but obtain it through some variant of the following 
reasoning: 

A measurement takes place when the particle passes through the first 
analyzer, and this results in the collapse of the wave function (or its 
replacement by an appropriate density matrix). But since we know from F 
that the S z analyzer is in the state Z + at time t 2, and as it cannot have 
changed between t~ and t2, the appropriate wave function at time t~ is 

'I'~ = ~Z +X (4.20) 

and thus the probability of A 1 is 

(q '? lA, l~/)  = 1 (4.21) 

in agreement with (4.9). 
On the other hand, this sort of reasoning does not yield (4.10), for 

(q,?lr,lq'7> = 1 /2  (4.22) 

and not l. But then what is the correct answer (if any) for the probability 
that S x = 1/2 at time t l, given D and F? We shall argue that the correct 
answer is (4.10), and the difficulty with (4.22) is that the reasoning which 
led to (4.20), while valid for predicting the result (4.9), is of little use when it 
comes to answering the question addressed by (4.10) because it makes no 
use of the relevant piece of information, contained in F, that the result of a 
later measurement of S~ yielded the value + 1 /2  and not - 1 / 2 .  By 
contrast, the consistent history approach makes important use of the 
information in the Sx measurement. Had the final state of the X analyzer 
been X -  instead of X +, (4.10) would be 0 instead of 1. 

From a physical point of view (4.10) simply reflects the idea that a 
measurement can indicate a property of the measured system of a time 
before the measurement takes place, given an appropriate construction of 
the measuring device and an appropriate dynamics for it and the measured 
system. Thus, if the S~ analyzer indicates that S x = 1/2, it is reasonable to 
suppose that the particle had this property when it entered the analyzer, 
and therefore at earlier times as well, as long as it was moving in a region 
free of magnetic fields. In particular, with reference to Fig. 2, the reasoning 
employed to answer question 1 in Section 3.2 indicates that when one of the 
two counters C a or C b is triggered, an instant earlier the particle was on its 
way toward this counter and not the other, and therefore, given the 
construction of the analyzer, it already had the corresponding spin polariza- 
tion. Thus if one accepts the fact that the answer to question 1 of Section 
3.2 provided by consistent histories is physically reasonable, it is hard to 
evade the conclusion that the particle entering a polarization analyzer of 
the type shown in Fig. 2 had the indicated polarization before it entered. Or 
at the very least the physical reasons for this are just as strong as those 
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Z X X 
Fig. 4. A second S x analyzer placed between the two analyzers of Fig. 3. 

which lead one to conclude that the particle has this polarization after it 
leaves. But this puts (4.9) and (4.10) on an equivalent footing: the former is 
true because of an earlier measurement, the latter is true because of a later 
measurement. 

But is it physically meaningful to talk about the value of S x before it is 
measured? Perhaps not, but then it would seem to be just as meaningless to 
talk about the value of S~ after it is measured, and if neither is meaningful, 
what is meant by measurement? However, as it might help in choosing 
between (4.10) and (4.22), we are happy to introduce a measurement of S~ 
which takes place at the intermediate time t 1 by means of an analyzer X 
placed between the other two (Fig. 4). One can then ask: given the initial 
state 7 Z X X  at t o and the fact that the first and last analyzers are in the 
states Z § and X § at time t 2, what is the probability that at this same time 
the intermediate analyzer will be in the state X § 

As only a single time (other than to) is involved, the standard statistical 
interpretation (Section 2.3) can be used to predict the following results if 
the experiment is repeated many times: 

(i) The result Z +X + occurs in 1 /4  of the cases, just as it does when 
the analyzer X is absent. 

(ii) Every time Z +X + occurs, the intermediate analyzer is found to 
be in the state X +, and not X - .  

What  (ii) implies, taken at face value, is an experimental confirmation 
of (4.10). One can try and evade this by claiming that the intermediate 
analyzer X has "perturbed" the system and "created" something which 
would not have been present had the analyzer been absent. And given that 
quantum measurements can, indeed, perturb the system being measured, 
this claim must be given serious consideration. 

Certainly if (i) were not true, i.e., if the presence of X altered the 
statistics of the X and Z analyzers, one would have direct evidence for such 
a perturbation. But (i) indicates that whatever perturbations may exist, they 
do not show up in the macroscopic measurement results. To go beyond this 
requires some sort of theoretical analysis. Fortunately the consistent history 
approach provides the mathematical tools needed for a rather detailed 
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analysis of what is and what is not perturbed; see Section 5. When applied 
to the case at hand, and given the idealizations necessary to permit an 
explicit mathematical analysis, the result is that what the X analyzer 
measures would have been there in its absence (in an appropriate sense; see 
the discussion of perturbations in Section 5.4). Of course this analysis 
cannot rule out the possibility that a different approach to analyzing 
measurements, not based on consistent histories, might come to a different 
conclusion about the perturbation produced by ,V. 

What of the Heisenberg uncertainty relations or at least their counter- 
part for spin polarizations? Are not these inconsistent with the truth of (4.9) 
and (4.10) together? Indeed, it is not hard to show that if 't~ is any 
normalized wave function which yields (4.21), (4.22) is a necessary conse- 
quence. However, all this shows is that (4.9) and (4.10) cannot both be 
calculated using formulas of the type (4.21) and (4.22), at least not with the 
same wave function. And as already noted in Section 3.3, within the 
consistent history approach it is not very natural to associate a unique wave 
function with a physical system at every instant of time. To be sure, within 
the consistent history interpretation the Heisenberg uncertainty relations 
apply in appropriate circumstances, but these do not include the circum- 
stance addressed by (4.9) and (4.10). 

Whatever the formal merit or physical plausibility of each of the 
results (4.9) and (4.10) separately, many physicists will still find their 
simultaneous affirmation counterintuitive. While all classical analogies for 
spin- l /2  particles are bound to be somewhat misleading, we think the 
following one may, at least, place these intuitive difficulties in a new light. 
Suppose that the classical analog of S~ = 1/2 is "the z component of 
internal angular momentum of the particle is positive," and similarly 
S x = 1/2 is analogous to a positive x component. Imagine that the classical 
particle passes successively through two measuring devices, the first of 
which measures the sign of the z component of the internal angular 
momentum without changing it, while producing unknown perturbations of 
the x component, while the second measures the sign of the x component 
without changing it, but perturbs the z component. Given that the two 
measurements yield "S= = 1/2"  and "S  x = 1/2"  in the sense of the anal- 
ogy, one can at once conclude that both of these results are valid at a// 
times when the particle is between the two devices. From this perspective 
there is nothing odd about the simultaneous truth of (4.9) and (4.10), nor is 
(4.16) peculiar. Instead it is the refusal of the consistent history approach to 
countenance the plausible inference (4.11), and its rejection of (4.15) as 
"inconsistent" which seems to be odd! 

The properties of the classical measuring devices just discussed were 
deliberately chosen to be in some sense analogous to those of the ideal 
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quantum measuring devices introduced in Section 5 below. It is generally 
accepted that quantum measurements always produce irreducible perturba- 
tions of the system being measured. The result of the consistent history 
analysis of Section 5 is that one can at least imagine ideal quantum 
measuring devices which do not  perturb the quantity they are designed to 
measure, while they do perturb other quantities. Having said this, it is well 
to emphasize that the analogy of the preceding paragraph must not be 
pressed too far; quantum physics is never really the same as classical 
physics, including classical physics with a stochastic component. 

5. IDEALIZED MEASUREMENTS 

5.1. Introduction 

Real laboratory instruments which amplify the effects of atomic pro- 
cesses to produce signals easily perceptible by human beings are compli- 
cated objects involving vast numbers of atoms, and are operated under 
conditions where thermodynamic irreversibility plays an important role. A 
direct attack on the quantum mechanics of such an apparatus runs into all 
the conceptual and technical difficulties of the many-body problem and 
statistical irreversibility in addition to the problem of quantum interpreta- 
tion. For this reason a ruthless oversimplification seems necessary in order 
to get to the heart of the basic quantum problem. The idealized quantum 
measuring apparatuses or "indicator devices" introduced below are consis- 
tent with the use of projection operators to represent physical events and 
with unitary time transformations, but with few other physical principles; 
in particular, all conservation laws (except for "conservation of probabil- 
ity," embodied in unitarity) are ignored. We do not suggest that such 
devices can actually be constructed in the laboratory, or that they would be 
useful if they could be. Their role is one of conceptual clarification, and for 
this they are well suited because their simplicity permits a detailed quantum 
analysis within the consistent history interpretation. One can, in particular, 
ask whether the measurement perturbs the system being measured, and if 
so in what way. One can inquire whether the system had the property 
indicated by the measurement at times before and at times after the 
measurement took place. As long as questions of this sort can be embodied 
in strings of events which form a consistent history, this approach to 
interpretation provides definite (statistical) answers which, we believe, can 
be the source of genuine insight into the problem of "real measurements," 
as well as the role of measurements in the "orthodox" approach to 
quantum interpretation. 
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5.2. A Single Ideal Measurement 

Let S be a q u a n t u m  system described using a Hi lber t  space S with a 
uni tary t ime t rans format ion  U(t', t). Let [A~] be  an event set at the t ime 
t = r, with a = 0, 1, 2 . . . . .  N - 1 the N distinct, mutual ly  exclusive possi- 
bilities. Let  I be  a quan tum-mechan ica l  " indica tor"  described by  an N- 
dimensional  Hi lber t  space I with o r thonormal  basis ~B, fi _- 0, 1 . . . . .  N - 
1. The  combined  system S c of I and  S is associated with the tensor p roduc t  

Sc = I | S (5.1) 

and  we employ  the usual convent ion  that  the symbol  A can be used bo th  
for an opera tor  on S and  the corresponding opera tor  1 | A on So; similarly 
b can denote  an opera tor  on I or the corresponding b | 1 on S~. 

The  t ime t ransformat ion  U~ for S~ is defined in terms of U for S in the 
following way. Let  r '  be  a t ime slightly later than r, with the difference so 
small  that  

u(~',  ~) = 1 (5.2) 

is an adequate  approximat ion .  Then  for t and  t' bo th  less than r or bo th  
greater  than  r ' ,  define 

cT~(t', 0 = tz(r, 0 (5.3) 

while for 

let 

where 

t ~ < r < r  ~<~ t '  (5.4) 

uc(t', 0 = u ( r , ~ ) u ~ u ( , ,  0 (5.5) 

uc(t, t') = u( t ,  ~) c~c;- ' ~7(~, t') (5.6) 

N - 1  

Uc~ = ~ s~ | A~ (5.v) 

N--1  

u~;' = ~ ~- ~ | A, ~ (5.8) 
a = 0  

with the ( s~ )  opera tors  on I def ined by  

s~ /~  = ~r (5.9) 

the sum fl + c~ unders tood  as modulo  N, and  consistent with this, - c~ in 
(5.8) unders tood  as N - c~. In  principle U(t', r') should appea r  in (5.5) but  
(5.2) justifies replacing it with U(t', r), and a similar c o m m e n t  applies to 
(5.6). 
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The intuitive interpretation of U~ is that except for the short interval 
from r to r', I and S are decoupled, and I does not change with time. 
During this interval, which is so short that S would undergo a negligible 
change if left to itself, the state of I changes from ~/~ to ~/~+~ if the situation 
A~ exists (the event Aft occurs) in S at this instant. Thus if at some time 
before r I is in one of the states ~t~, say, ~0, its state at some later time after 
r '  will indicate the situation in S at time r. This intuitive picture is both 
confirmed and made more precise by the detailed analysis which follows. 

Given a history ~ of S in the form (2.2), with 

to < < < 9 (5.10) 

and none of the t k inside the interval from r to r', the paral le l  history J4P c of 
Sr is defined as 

Dc--> E1--~ E2--> . . . --~ E,- -~  F ~ (5.11) 

where 

D C =  d | D,  F c =  f | F (5.12) 

and Ej in (5.11) denotes, of course, 1 | Ej.  Here d a n d f  are the initial and 
final states (or events) of the indicator 1, and in what follows we shall 
always assume that 

d =  r ~ f =  1 (5.13) 

where f o r f l = 0 , 1 , . . . , N - 1 ,  

r B = I~P)(~e{ (5.14) 

In addition it is convenient to introduce a new event set [Jp] at a time ti 
lying between r'  and tf, with 

4 ~ = r (5.15) 

For notational convenience we shall always let t i = tf though the results do 
not depend on this identification. 

If J -  is a family of histories of S, (2.6), we shall use the symbol J~--~ for 
the family of parallel histories of S c, and 5 - *  for the larger family 
constructed by adding the event set [J~], that is, 

__> ~ FC [<1 I4 ]-" (5.16) 
Lest the reader be suspicious that the asymmetric choice of d a n d f  in (5.13) 
together with the additional event set [Ji ~] at the end and not the beginning 
of the history represent a surreptitious insertion of an "arrow of time" into 
the interpretation, we remark that this procedure is a matter of technical 
convenience. The same results in a completely symmetric (but somewhat 
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lengthier) form could be obtained by setting d = 1 and introducing an 
additional event set [J~] at a time t h between t o and ~-, with Jh ~ = r ~. 

We are interested in the relationship of the probabilities of histories ~U 
of S and their parallels ~ c  of So, with or without an additional event JT. 
For their study the following identity is extremely useful; its derivation is in 
Appendix D: 

= T r [ E n . . .  E m + I A ~ E m . . .  E ~ D G I . . .  G m A ~ G m + i . . .  Gn (5.17) 

where m is the index such that 

t,, < ,r < ,c' <~ t,~+~ (5.18) 

Here Ej and Gj, which may be identical, are any elements of the event set 
[Eft]. The Heisenberg operators inside the left trace over states of S~ are 
defined by formulas of the type 

E[~ = Uc(t  ~ , t k )E k Uc(t  k , tr) (5.19) 

whereas the trace on the right side is over states of S, and the Heisenberg 
operators are defined by (2.9); note that Es is in general not equal to 
1 | Other than this, the arguments of the two traces differ in that ~Y 
appears only on the left, while on the right side ~,v has been inserted twice 
at the appropriate point in the time order. In applications of (5.17) there 

ACt 
will typically be an additional operator J~ between G~ and F~ on the left 
side. However, since .~  commutes with F c [see (5.13)] it is evident that this 
trace will vanish for a :/: ,/, and be identical to (5.17) for a = y. 

T h e o r e m  1. Let 3 -  be a consistent family of histories of S compati- 
ble with the event set [AT]. Then the family 3-~ for S c is consistent and 
compatible with [AT], and so is J - * .  

As Y~ is a subset of 3-c*, we need only study the latter. The proof of 
consistency requires checking the counterpart of (2.19) for each choice of k, 
including the "extra" event k = i. But this last is trivial since ]Z commutes 

A c 

with F .  If k takes any other value, (5.17) shows that the consistency 
condition for Y *  can be reexpressed as a consistency condition for ~ -  
with the  presence of the additional event A, v at time ~-. But as 3 -  is 
compatible with [AT], the real part of the trace on the right side of (5.17) 
vanishes, and thus also that on the left. This takes care of the cases in 
which the event at t~ is one of the j r .  If it is the sum of two or more, the 
corresponding trace is the sum of traces corresponding to the separate j r ,  
so the real part will again vanish. The proof that ~--* is compatible with 
[AT] comes from noting that if J -  does not already include the event set 
[AT], it can be enlarged to a consistent family which does include [A~], and 



Consistent Histories and Quantum Mechanics 245 

the above argument shows the consistency of the enlarged 3-~* correspond- 
ing to this enlarged Y .  

Theorem 2. Let ~ be a consistent history of S of the form (2.2) 
which is compatible with the event set [Aft], and ~ its parallel, (5.11), for 
S~. Then it is the case that 

P ( ~ c  ]D ~ A r ~) = P ( ~ I D  A F)  (5.20) 

that is to say, 

P ( E , A  . . . E N I D  ~ A F  ~ ) = P ( E  I A  . . . E n ] D A F )  (5.21) 

As pointed out in Section 2.2, (5.20) is simply an alternative way of 
writing (5.21). To establish this result, note that ~ is consistent, by 
Theorem 1, and that w ( ~ r  [see (2.10)] is the sum of (5.17) over the N 
values of 7 in the case where Gj = Ej for all j .  As ~ is compatible with 
[A[], summing the right side of (5.17) over 7 yields the trace of the 
corresponding expression with the two A~ replaced by 1, i.e., use the 
counterpart of (2.14). Thus w ( ~ )  is the same as w(;Yg~), and for the same 
reason w(D ~ A F ~) is the same as w(D A F). 

Theorem 3. The family of histories 

D C --> [ A ; ]  --> [JT] -~ F~ (5.22) 

of Sc is consistent (whether or not the corresponding D ~ [ A ] ] ~ F  is a 
consistent family for S), and 

? ( A :  A :?  I A F c ) = 0, for  V (5.23) 

P ( A g A J i ~ ] D ~ A F ~ ) = P ( A ; ] D C A F C ) = P ( J i ~ [ D C A F ~ )  (5.24) 

consequently 

p ( j r  ] D ~ A A ;  A r ~ ) = 8~v = P ( A F I D  ~ A .17 A F ~ ) (5.25) 

As usual these equations are understood as applicable only when the 
probabilities of the events of the right of the vertical bar are nonzero; in 
particular, (5.23) and (5.24) require that Trc[/5@ C] not vanish, the left 
equality in (5.25) assumes that P(A~I  D ~ A F ~) is nonzero, etc. The proof 
that (5.22) is consistent employs (5.17) in the same manner as the previous 
proofs, except that now n = 1, and El,  or G 1, belongs to [Aft], and the 
derivation of (5.23) and (5.24) follows the same route. We omit the details. 
The results in (5.25) are consequences of (5.23), (5.24), and the definition of 
conditional probabilities. 

In words, what (5.25) asserts is that if the event Aft occurs ("exists") at 
time r in So, we can be sure that at the later time t i the indicator will be in 
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the state ~ ~ and not in any other ~ Y with Y =/= a. Conversely, if the indicator 
is in the state (Y at the later time, A~ occurred at the earlier time, and A]  
for ~ ~ 7 did not occur. A particular application of this result is the 
following: 

Theorem 4. If ~ is a consistent history of S~ of the type (5.11) 
which is compatible with the event set [A,~], then 

P ( J i V l ~  A A ~ )  = 6~v = P ( A ~ I : ~ r  A J J  ) (5.26) 

The first step of the proof consists in showing with the help of (5.17) 
that ~(~c is compatible with [A~] and [Ji v] together; we omit the details. 
Hence ~ c  /~ A~/~ Ji~ belongs to a consistent family which contains (5.22) 
as a subset, and (5.26) follows from (5.25) by an argument applicable to 
classical probabilities: from P ( A I B  ) equal to 1 or 0 we can infer that 
P ( A  I B / ~  C)  equals 1 or 0, respectively. 

In words, (5.26) asserts that if A~ occurs along with certain other 
events, and together they form a consistent history of S~, then at the time t~ 
the indicator will certainly be in the state (~. Conversely, if the indicator is 
in state (~ at t~, one can be sure that A~ occurred, provided the consistency 
condition is satisfied. Note that Theorem 1 implies that the consistency of 
the parallel history ~ and its compatibility with [A, ~] in the system S is 
sufficient (though it is not necessary) to establish the condition required in 
Theorem 4. 

5.3. Several Ideal Measurements 

The approach and the results of Section 5.2 can be generalized to the 
case of several ideal measurements on a system S taking place at the 
successive times ~'1, ~'2, �9 �9 �9 ~,, with 

to < ":1 < r2 < " " " < % < tf (5.27) 

Let [A, ] be an event set at the time ~ ,  with a = 0, 1 . . . . .  N~ - 1. Then the 
/~th indicator device I~ is described using an N -dimensional Hilbert space 
I,. with an orthonormal basis f f ,  0 < fl < N~ - 1. The combined system S c 
of S plus the p indicators is associated with the tensor product space 

S c = I @ S = I 1 @ 12 | �9 �9 �9 Ip | S (5.28) 

where I is the product space for the set of indicators. 
The time transformation U c of S c is related to U for S as follows. For 

each ~-, let ~-', be a time which is slightly later, with the interval so short that 

U(~-~ ,~-'~) = 1 (5.29) 
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is an adequate approximation (and of course T' is earlier than %+ 1). We 
shall assume that all the events in the histories we wish to study fall outside 
these short intervals. For both t and t' between T~ and T,+j for some/~, or 
both less than T o or greater than z~, define 

u~(c, 0 = u (c ,  t) (5.30) 
(where the symbol on the right stands for 1 | 1 | �9 �9 �9 U(t', t), and a similar 
convention applies to other operators). Next, for t and t' satisfying 

let 

where 

"/';-- 1 ~'~ t -4< T~ < Ts < t' < T/z+I 

uc(c, 0 = u(c, ~.)u~. u(.~, 0 

Uc(t,c) = U(t,T,,)UcS~U(T,,,C) 

(5.31) 

(5.32) 

(5.33) 

r2 = 1~2><~21 (5.38) 
As in Section 5.2, it is convenient to introduce an event set [Ji a] at some 
time t i between T" and tf, where a stands for 

a = c q , c ~ : , . . . ,  c~ (5.39) 

where 

N~-I  

vc. = ~ V |  A2 (5.34) 
,~=0 

N~-I 

Uc;' = 2 s~-"| A• (5.35) 
o~=0 

with {s2 } operators on I ,  defined by 

s ; ( f  = ( f  +" (5.36) 

and the sum a + /3  understood modulo N,;  similarly - a  in (5.35) is 
understood as N~ - c~. For other choices of t and t' (always outside the 
intervals from T, to T'), U C can be obtained using the counterpart of (2.7). 
The intuitive interpretation of these equations is the same as in Section 5.2, 
except that S now interacts with several different indicators at successive 
times. The property "measured" by the/zth indicator is, of course, deter- 
mined by the event set [A] ]. 

Consider a history ~ of S of the form (2.2) with initial and final times 
satisfying (5.27). Its parallel ~Z, Pc for Sc is (5.11), with d and f in (5.12) given 
by 

d = r  ~ 1 7 4  ~ 1 7 4  f = l  (5.37) 
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and 

J?  = r~' | r~ 2| . .  �9 r 7- (5.40) 

is an operator on I; of course the same symbol denotes Ji a | 1 on S c. Again 
we assume that t i = tf as a matter of notational convenience, but the results 
do not depend on this identification. 

Given a family J -  of histories of S of the form (2.6), 3-c will denote 
the corresPonding family (5.11) of parallel histories of S~, and 3 -*  the 
latter argumented with the additional event set [aria]: 

D~-->[E~]- -~[E;] - - ->"  " " [E:]--->[Ji~ F ~ (5.41) 

It is worth emphasizing that the event sets of type [Eft] play a very different 
role from the [A, ]. The latter enter explicitly into the dynamics of S~ as part 
of the definition of Uc, whereas the former do not. Altering the [E~] 
changes the set of physical questions addressed by the theory without 
altering the dynamics of either S or S c, while changing the [All  alters the 
dynamics of S~ (though of course not that of S). Naturally, nothing 
prevents setting some (or all) of the [E~] equal to some of [A2I when the 
occurrence of the latter is among the questions of interest. 

The counterpart of the trace formula (5.17) is now (see Appendix D) 

= Tr[..  : A 2 . . .  E~- . .A~' . . ,  D . . .  

x d k . . .  (5.42) 

where on the right side all the operators/~,  . . . /~1  occur to the left o f / ? ,  
AIX 

with the Av, inserted in the correct t ime order [see (5.17) and (5.18) for a 
particular case] while the operators G1 �9 �9 �9 G~ occur to the right of D, again 

c~ with the A, ,  inserted in the correct time order. The values of a~, a 2 . . . .  on 
the right side of (5.42) correspond to a on the left; see (5.39). 

T h e o r e m  5. Let Y be a consistent family of histories of S compati- 
~x O 7 -  ble with all the event sets [A~ ], 1 4 /~ ~< v, together. Then the family ~ c  

for S~ is consistent and compatible with all the [Av, ] together, and so is 
5 * .  

The proof makes use of (5.42) in a manner parallel to the use of (5.17) 
in the proof of Theorem 1, so we omit the details. 

T h e o r e m  6. Let ~ be a consistent history of S of the form (2.2) 
C~ which is compatible with all the event sets [A, ], 1 < /x < v, together, and 
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Y c  its parallel, (5.11), for S C. Then their probabilities are related by (5.20) 
or, equivalently, (5.21). 

The proof is parallel to that of Theorem 2, and makes use of the fact 
that 

~]aJi ~ = 1 (5.43) 

where ~ stands for the multiple sum over a 1, ~2 . . . .  , ~,. 
The notation 

d "  = A( '  A A~ ~ A " . "  A?" (5.44) 

where b stands for/~l,/~2 . . . .  ,/3,, and 

8o5 = 6~,~,6~u~, . . . 6o~B, (5.45) 

is needed for the generalization of Theorem 3: 

Theorem 7. The family of histories 

�9 . . --~ A ;  -->[ --->r c Dc-- -~[A;] - -~[A;] - - -~  [ ] Ji c~ ] (5.46) 

of Sc is consistent, and 

P ( d  5 A J a ] D  ~ A F  ~ ) = 0  if 6a5=0 (5.47) 

while 

where 

p ( j a  A4.]D AF C) 

= P(J  IDeA F c) = p(4 ID A F c) 

= A(a)/yoA(a) (5.48) 

A(a) = w ( D  A A~ '  A A ~  2 A . . .  A ~  A F )  

= T r [ 3 , ~ . . .  3 ~ , / ) 3 ~ ' . . .  3;"_#] (5.49) 

A consequence of (5.47) and (5.48) is 

P(J~a[DC A za/5 A F c )  = 6ab = p ( ~ 5  I D c A .IF A F c)  (5.50) 

It is worth noting that in the case F = 1, the right side of (5.48) has the 
somewhat simpler form: 

P ( J i a l D  c ) = Tr[Af l , ' . . .  3~ ' / )3~ ' . . .  3,~"]/Tr[/)]  (5.51) 

The proof of Theorem 7, including the consistency check and the verifica- 
tion of (5.47) and (5.48), is carried out using the trace formula (5.42), and 
once again we omit the details. 
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Theorem 8. If J(r~ is a consistent history of Sc of the type (5.11) 
which is compatible with all the event sets [A t ], 1 ~< /~ ~< p together, then 

P ( J i a l ~ c  /x d 6 ) = ~3,b = P ( d  6 I ~  /~ j a ) (5.52) 

The proof is parallel to that of Theorem 4, as is the intuitive signifi- 
cance of the result. 

5.4. Discussion of the Results of Sections 5.2 and 5.3 

An elementary but important observation is that the elementary indi- 
cator I of Section 5.2 measures what it was designed to measure: its state 
after the interaction (that is to say, the change in its state from before the 
interaction to afterwards) is correlated in an appropriate manner with the 
existence of the property of interest in the system S (as part of Sc) at the 
time of interest; see (5.25). Furthermore, this is not simply a matter of 
definition, it comes from mathematical analysis. As measurements are not 
among the fundamental interpretive elements of the consistent history 
approach, this result is nontrivial, and it is particularly interesting in light of 
the controversies and conceptual confusion which surround many discus- 
sions of quantum measurements. 

Not only does S possess the measured property at the instant of 
interaction, but the same is true shortly before and shortly after the 
interaction, as can be shown by an extension of the analysis employed for 
Theorems 3 and 7. Here "shortly" means after the previous measurements 
and before the next, and that a negligible change occurs in the Heisenberg 
operator in S corresponding to the projection A~ of interest (which is 
automatically true when A~ is a constant of the motion). Thus the time 
asymmetry of the von Neumann interpretation (Chapter 3, Section 3 of his 
book 0)) is absent in the consistent history approach, with consequences 
which are evident in the examples of Sections 3 and 4. 

The elementary nature of the indicators and the extremely simple form 
for their interaction with S suggest that they may well be the most "benign" 
form of measurement possible within a quantum context, and hence well 
suited for discussing the truly "irreducible" perturbations produced in a 
measured system by its interaction with a quantum measuring device. The 
consistent history approach allows one to analyze these perturbations in 
some detail, with the result (not very surprising) that the perturbation 
depends very much on what aspect of S, i.e., which consistent history, is 
under study. 

At this point it is worth noting that the "perturbation" produced by 
coupling I to S depends not only on the form of this coupling, as expressed 
in U c, but also on the form of the initial state d of I (and final state f, if not 
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equal to 1). While the particular form employed in (5.13), or its counterpart 
(5.37), is not essential, s o m e  restriction is needed in order to obtain the 
basic consistency results of Theorems 1 and 5, which underlie Theorems 2 
and 6, and the discussion below. 

The simplest situation is a consistent history ~ of S which is compati- 
ble with the events being measured. Here the result (5.20) or (5.21), for 
either a single measurement (Theorem 2) or several (Theorem 6), can be 
interpreted as saying that coupling I to S produces no pe r tu rba t i on  wha t so -  

ever: the probability for ~ within the isolated system S is precisely the 
same as that of its counterpart ~ c  in the combined system So. To counter 
the argument that identical statistics is no proof of the absence of a 
perturbation in a single experiment, we note that consistent histories 
provide a probabilistic, not a deterministic, approach to quantum interpre- 
tation, so that within this interpretation identical statistics is as close as one 
can come to asserting that there is "no perturbation." Any other definition 
would lead to the odd conclusion that S is "perturbed" even when it is 
isolated and does not interact with l !  

In the case considered in Section 5.2, a single measurement at one 
time, there is always some consistent history of S (though not for an 
arbitrary choice of D and F)  which is compatible with the event set [Aft], 
and is thus unperturbed when S is coupled to I. However, with multiple 
measurements at successive times it is easy to imagine situations (e.g., let S 
be a sp in- l /2  particle subject to several measurements of Sx and S z which 
alternate in time) in which there is no consistent history of S compatible 
with all of the [A~] together. In this case every aspect of S is perturbed by 
the sequence of measurements. 

It is of interest to note that any consistent history ~ f ,  and more 
generally any consistent family Y of the form (2.6) of histories of S is 
"measurable" in the sense that one can choose t, = n, let ~-k = tk for each k, 
and let [A~] be the same event set as [Eft]. The compatibility of if-  with all 
the measurement event sets together is thus trivial, and hence these mea- 
surements do not perturb the histories in Y .  Furthermore the occurrence 
or nonoccurrence of every event in one of these histories is faithfully 
"recorded" by the corresponding measuring device; see (5A7) and (5.48). 

When perturbations do occur, there are several possibilities: 
1. The history ~ of S is consistent and so is the parallel history ;~U c 

of Sr but the probability of ~f~c differs from that of ~ .  This case seems 
intuitively similar to what would happen in a classical system if measuring 
devices produced random perturbations (as in the analogy used in Section 
4.3). 

2. The history ~ is consistent, but its parallel ~,~fc is not. This type 
of perturbation seems intuitively quite different f rom 1, since rather than 
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asserting that the motion of S has changed due to its interaction with I, it 
implies that a question about this motion which made good sense in the 
absence of coupling to I is "meaningless" when this interaction is present 
(in the sense that the consistent history approach cannot give it any 
meaning). It is hard to think of a suitable classical analogy. 

3. The history Jg~ is inconsistent, whereas its parallel ~ c  is consis- 
tent. Examples of this situation, the "inverse" of 2, are easily produced 
using Theorems 3 and 7, which assert that a history consisting entirely of 
measured events of S (apart from D and F) will always be consistent in S c, 
even though it might be inconsistent in the isolated system S. The intuitive 
explanation is that the correlations between S and I produced by their 
interactions prevent the quantum interference effects which cause inconsis- 
tency in S by itself from affecting the corresponding sequence of events in 
Sc. Note that one can augment consistent histories of S~ produced in this 
way by adding appropriate additional events between the measured ones; 
(4.18) is an example. 

In summary, the consistent history approach confirms the conven- 
tional wisdom that quantum measurements produce irreducible perturba- 
tions, but it also provides a detailed (though perhaps not altogether satisfy- 
ing) analysis of which aspects of the measured system are perturbed, and in 
what way. 

Can the analysis of Sections 5.2 and 5.3 be extended in the direction of 
the more realistic sorts of measurements mentioned in Section 5.17 One 
approach is to try and relax successively some of the drastic simplifications 
employed in the ideal case. The easiest to get rid of is the extremely short 
time interval between ~- and r'. As long as the unitary transformation 
carrying S c from one side of this interval to the other is specified, there is 
no limitation on the length of the interval, and the consistent history 
approach can be used to analyze what happens at earlier or later times--or 
even within the interval itself, if the corresponding Uc is known. A more 
complicated dynamical interaction producing additional changes in S can 
also be tolerated, though this will complicate the relationship between 
histories of S and their counterparts for S c. An indicator I with nontrivial 
dynamics at times lying outside the interval from ~" to ~-' would seem to pose 
no problems in principle, though the fact that the choice of d (and f )  is of 
some importance even in the simplest case must be kept in mind. 

All of this is still very far from a realistic description of even the 
simplest macroscopic measuring device exhibiting thermodynamic irrevers- 
ibility. There is no formal difficulty in including some of the necessary tools 
in a consistent history approach. Thus a density matrix can be used instead 
of a projection operator for d, and the Ji ~ could very well be projections 
referring to macroscopic events, as these are treated on the same footing as 
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microscopic events in the consistent history analysis. Whether such calcula- 
tions will confirm the picture suggested by Sections 5.2 and 5.3 or uncover 
essential flaws cannot be confidently answered in advance. There exist 
already, however, some arguments about the behavior of large quantum 
systems which can be re-interpreted from the consistent history perspective 
(Section 7.2.1), and seem compatible with the conclusions drawn in Sec- 
tions 5.2 and 5.3. 

6. CONCLUSIONS 

6.1. Summary of the Consistent History Approach 

Consistent histories provide a probabilistic interpretation of nonrela- 
tivistic quantum mechanics for a finite closed (i.e., isolated) physical 
system. The objects studied are sequences of events occurring at a succes- 
sion of times, denoted by "histories." Each event is represented by an 
orthogonal projection operator on the Hilbert space used to describe the 
system, and time development corresponds to unitary transformations of 
this space--these, of course, are standard tools of standard quantum 
mechanics. 

Probabilities are assigned to a history, or more generally a family of 
histories, provided a certain consistency condition (described in detail in 
Section 2) is satisfied. The use of this condition to make a selection among 
all possible event sequences is the main innovation in the consistent history 
approach, the aspect which separates it from other approaches to quantum 
interpretation, some of which are discussed below in Section 7. If consis- 
tency is satisfied, a conditional probability for intermediate events, given 
the initial (D) and final (F)  events, is assigned through Equation (2.12). 
The physical interpretation is then based on these probabilities and others 
obtained from them by well-defined procedures. The structure also allows 
for probabilities conditional on the initial event alone (b}r setting F--- 1), or 
on the final event alone (D = 1), or even unconditional probabilities 
(F  = 1 = D), though it is not clear that the last are useful in physical 
applications. The whole procedure for determining consistency and assign- 
ing probabilities is explicitly independent of the sense of time: a history 
read "backwards" from the final event to the initial event is treated in 
precisely the same way as one read "forwards" from the initial event to the 
final. 

The consistency condition is a mathematical requirement which con- 
strains the choice of a sequence of events to which a probability can be 
assigned. It makes no reference at al l  to whether the events are microscopic 
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or macroscopic, nor to any process of measurement, nor to whether the 
events are somehow "observable." (Of course, all events must be repre- 
sented by orthogonal projection operators.) When consistency is satisfied it 
has as a consequence--indeed, this can be regarded as the definition of 
consistency--the fact that the probabilities assigned to histories belonging 
to a consistent family can be treated as if they were classical probabilities 
and manipulated accordingly; for example, the standard formulas for 
conditional probabilities are applicable. In the consistent history approach 
these probabilities are then given their usual classical interpretation. Thus, 
for example, from P(A I B) = 1 and the occurrence (or existence) of the set 
of events B, one can infer the occurrence (existence) of the event or set of 
events A. The probabilities so interpreted make physical sense, or at least 
this seems to be the case for the specific examples considered in Sections 3 
and 4. On the other hand, inconsistent histories (or families of histories), 
examples of which are easily constructed, remain uninterpreted; they are 
"meaningless" in the sense that the consistent history interpretation assigns 
them no meaning. (For histories which are almost consistent, see the 
additional remarks in Section 612 below.) 

The well-known conceptual difficulties which arise in standard quan- 
tum mechanics when the operators associated with two observables fail to 
commute have their counterpart in the fact that one cannot in general 
combine all of the events belonging to two consistent histories, or simply 
add additional events to a single history, and expect the result to be 
consistent. Even two histories with the same initial and final event may be 
"incompatible" in the sense just mentioned. We take the attitude (see the 
example in Section 4) that this incompatibility is no ground for rejecting 
the (probabilistic) conclusions obtained from the two histories separately, 
but it does rule out the possibility of combining such conclusions by ~he 
usual classical rules in order to derive certain additional results. 

While measurements are not fundamental to the interpretation scheme 
of consistent histories (and also because of this fact), the latter can be used 
to analyze idealized, and in principle more realistic measurement processes 
in considerable detail, by the device of considering the measuring appara- 
tus and the system measured as part of a single closed quantum system. 
One can sensibly formulate such questions as: Does the measuring instru- 
ment perturb the measured system, and if so how? Is an indication on a 
measuring device at some later time correctly correlated with the state of 
the system measured at the moment the measurement took place? Did the 
system have the specified property before the measurement took place, 
a n d / o r  afterwards? Sometimes the consistent history approach will refuse 
to answer the question on the grounds that it involves the discussion of 
events which do not form a consistent history, but in a surprisingly large 
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number of cases, at least for the highly idealized measurements discussed in 
Section 5, answers are available which make good physical sense, and also 
throw a little light on the role of measurements in "orthodox" quantum 
interpretation (Section 7.1). Of particular interest is the fact that, in marked 
contrast to von Neumann's approach to measurement (Chapter 3, Section 3 
of Ref. 1), the consistent history formulation allows one to draw inferences 
from the measured result about the state of the measured system before as 
well as after the measurement with equal ease. 

6.2. Extensions and Applications 

A peculiar feature of the consistent history approach is that it begins 
with a nonnegative weight function (2.10) which cannot be consistently 
interpreted in general as a (nonnormalized) classical probability, and then 
selects certain situations in which the classical rules apply by the criterion 
that these rules do in fact work. What is remarkable is not that the resulting 
numbers behave formally like probabilities, which is necessarily the case, 
but that they can be given a sensible physical interpretation. Now while 
(2.10) is a natural and fairly simple generalization of the corresponding 
classical expression (for events in a classical phase space with time develop- 
ment given by Hamilton's equations) to the noncommutative quantum 
case, it is hardly unique, and one wonders if there are other expressions 
related to temporal sequences of events, or perhaps some very different 
quantum structure, which can be given a physically reasonable or at least 
interesting probabilistic interpretation by using a similar selection process. 

Another direction in which one might hope to extend the consistent 
history approach is to find some physical interpretation of the weights 
given by (2.10) when the events in question do not form a consistent 
history. One such interpretation is already implicit in Theorem 7 of Section 
5: aside from normalization, the weights for histories belonging to a 
particular (inconsistent) family are the probabilities that the corresponding 
consistent histories would occur in a combined system which includes 
idealized measuring instruments which detect the different events in the 
original system at the appropriate times. However, this interpretation is 
neither simple nor a source of much intuition, given all the peculiarities 
associated with quantum measurements. Can one do better? 

For reasons indicated in Section 2.2 it would be useful to have a 
notion of "almost consistent," or "consistent for all practical purposes." A 
first approximation to what is needed can be constructed quite readily: 
violations of (2.19) should be so small that physical interpretations based 
on the weights (2.10) remain essentially unchanged if the latter are shifted 
by amounts comparable to the former. Of course this leaves things as a 



256 Griffiths 

matter of judgment, and the errors which might be of concern in some 
studies could be considered unimportant in others. Perhaps this is the best 
that can be done, but a more systematic approach could be of value. 
Obviously, this problem is not entirely unrelated to that mentioned in the 
previous paragraph. 

There are several possible applications of the consistent history ap- 
proach in its present form which could be useful in providing a better 
intuitive understanding of quantum mechanics. Those which immediately 
come to mind are the standard quantum paradoxes represented by simple 
gedanken experiments comparable to those considered in Sections 3 and 4: 
diffraction by a double slit, various forms of the Einstein-Podolsky- 
Rosen (2) paradox, etc. A great virtue of the consistent history approach is 
that as long as these problems can be "modeled" in a form simple enough 
so that the appropriate time transformations can be worked out (by 
standard quantum mechanics), the consistent history answers--including, 
of course, the refusal to give an answer because of inconsistency--come out 
by strict mathematical reasoning without appeal to physical or philosophi- 
cal intuition. Whether these answers are palatable, or yield some physical 
insight, is of course another matter which can only be settled by consider- 
ing the explicit results. 

Another task to which consistent histories might make a positive 
contribution is that of understanding why, assuming the fundamental 
processes of nature are quantum mechanical, the events of everyday life 
(including the meter readings in physics laboratories) seem to be described 
so well using classical concepts. Since the consistent history approach uses 
the same formal machinery for macroevents as for microevents, and does 
not need an external observer or a deus ex machina to collapse wave 
functions, it would seem to be a good starting point for such a study. "But 
why the consistency condition; since the events of interest in the macro- 
scopic domain can be represented by operators which commute for all 
practical purposes?" is an obvious question. While it is at least plausible 
(see von Neumann's arguments in Chapter 5, Section 4 of Ref. 1) that a set 
of commuting operators will suffice for macroevents at a single time, the 
appropriate generalization for a succession of macroscopic events in a 
closed system at different times, given that one of course wants to study the 
statistical correlations between them, is no t  obvious. The use of the corre- 
sponding Heisenberg operators referred to a common reference time does 
not appear promising (i.e., they are unlikely to commute; see the comments 
at the end of Section 7.2.2). The consistency condition may very well 
provide a natural and useful way of approaching such a problem: i.e., one 
would hope to show that large classes of histories involving appropriate 
macroscopic events are consistent and compatible with each other. How- 
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ever, to say this is to name a research program, and the actual utility of 
consistent histories for this purpose remains to be shown. 

7. THE LITERATURE 

The literature on quantum interpretation is immense, and Jammer has 
devoted an entire book (3) to a discussion of various points of view. Our 
intention here is simply to discuss certain proposals which seem particularly 
important or particularly relevant to the consistent history approach, and 
for each of these we mention only,some of the published material. 

7.1. Quantum Orthodoxy 

While its representatives disagree among themselves at many points, 
there is nonetheless an easily identified mainstream of quantum interpreta- 
tion, called the "orthodox view" by Wigner in a paper (4) which gives an 
excellent summary. A lengthier exposition of similar ideas will be found in 
the book by London and Bauer. (5) Evidence for its dominant place in 
modern physics comes from the fact that this interpretation, or at least 
important elements of its viewpoint, underlies the expositions found in the 
well-known textbooks of Landau and Lifshitz, (6) Messiah, (v~ and Schiff. (8~ 

The principal features of quantum orthodoxy, following Wigner's 
exposition, are as follows: 

(i) The state of a closed physical system S is completely specified by 
a wave function ~ which evolves in time according to the Schr6dinger 
equation. 

(ii) The wave function can be used to predict the probability of the 
result of a measurement carried out on S by letting it interact with an 
external apparatus (during which time S is no longer a closed system). 

(iii) As a result of this interaction the wave function after the mea- 
surement has a form which is determined by the result of the measurement 
(or by an appropriate density matrix if the result of the measurement is not 
specified). For a suitably idealized "instantaneous" measurement this form 
is specified by von Neumann's  "projection postulate" (see Chapter 5, 
Section 1 of Ref. 1), and the process by which the wave function before the 
measurement is changed into the wave function (or density matrix) after 
the measurement is often referred to as "collapsing" the former. 

The above principles do not specify what is happening inside a closed 
system during the time intervals between measurements, and here there are 
some differences of opinion. One extreme is the agnostic one: quantum 
mechanics only predicts the results of measurements and says nothing 
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about the system being measured. While Wigner is probably sympathetic to 
this point of view, von Neumann (~) appears to take a more realistic position 
that ~ can be used to calculate probabilities at any time, in the sense of 
what we have called the "standard statistical interpretation" in Section 2.3. 
If, however, the system is subjected to a measurement, the result will be to 
perturb the system so that after a measurement (of a suitably ideal form) 
is an appropriate eigenstate of the operator corresponding to the quantity 
measured. 

The differences just mentioned do not affect predictions about the 
outcome of a measurement or a set of successive measurements. Using (i), 
(ii), and (iii) one can work out the probability that a set of (appropriately 
ideal) measurements carried out at a succession of times t I < t 2 < �9 �9 - will 
yield the results ~ 1 , a 2 , . . .  ; the result [see, e.g., Eq. (12) of Ref. 4] is 

. .  A . A  A .  ] (7 .1 )  P(o~ 1 , a 2 ,  . . . , Oev) -- -- T r [ A ~  " ATDA~ ' . . .  ~ 

[Tr/5] 
where we have written the right-hand side in the notation of Section 5 
above. A time-symmetric version of (7.1) has been worked out by 
Aharonov eta/. (9) 

Many physicists who are sympathetic with the orthodox interpretation 
are nonetheless dissatisfied with its reference to external measurements. 
Why not treat S and the measuring apparatus I as a single closed system 
I + S? Solving the Schr6dinger equation for such a system will in general 
lead to a grotesque wave function [in our terminology; (3.3) is an example] 
and the problem of interpreting what this means. One approach is to 
employ (ii), but then one must let I + S interact with an external measuring 
device, and one is back to the original problem. Attempts to resolve the 
resulting "quantum measurement problem" through reference to conscious 
observers or genuinely classical pieces of apparatus are not very palatable 
to most physicists. Some other possibilities are described in Section 7.2 
below. 

By contrast, the consistent history approach ascribes probabilities to 
sequences of events in closed systems, denies that the physical states of 
such systems are appropriately described by wave functions in the manner 
used in the orthodox approach (see Section 3.3), and does not give to 
measurements any fundamental role. Thus at first sight it might seem that 
it has nothing whatsoever in common with the orthodox interpretation. But 
that is misleading, for when measurements of a suitably idealized sort (in 
particular involving the "short time" approximation of von Neumann; see 
Chapter V, Section 1 of Ref. 1) are analyzed in the consistent history 
formalism, the measurement statistics are identical to those of the orthodox 
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approach: (5.51) corresponds to (7.1), and (5.48) to the symmetrized version 
of (7.1) considered by Aharonov eta/. (9) How can this surprising unanimity 
be understood, given the differences in the two approaches? 

From the consistent history prespective there is a ready explanation. In 
order to apply classical probabilistic concepts within the quantum domain, 
some regulatory principle must be employed, as otherwise the results will be 
contradictory. For consistent histories this regulatory principle is the mathe- 
matical requirement of consistency. Now it seems plausible that this condi- 
tion is satisfied for those sequences of macroscopic events which the 
orthodox interpretation would regard as "results of measurements" (or that 
it is satisfied "for all practical purposes," which is surely sufficient given 
that the projections corresponding to macroscipic events can hardly be 
given an extremely precise definition). The reason is that violations of 
consistency correspond (speaking somewhat loosely) to the presence of 
significant quantum interference, and the model calculations of Section 5 
and other results referred to in Section 7.2.1 below suggest that such 
interference is probably suppressed for appropriate sequences of events 
(excluding, of course, specific "grotesque events," but these are surely not 
in view in the orthodox approach. ) 

If the foregoing is correct, the more agnostic type of orthodox ap- 
proach, that which regards only the "results of measurements" as physically 
meaningful, is using a regulatory principle which selects out only a tiny 
subset of consistent histories of I + S--but of course an extremely impor- 
tant subset, as it includes those which are crucial for interpreting the 
macroscopic results of laboratory tests. On this subset it and the consistent 
history approach give the same probabilities, which explains why (5.51) is 
the same as (7.1). 

But whatever its advantages, this "conservative" approach exacts a 
heavy price in terms of the conceptual foundations of quantum theory. On 
the one hand, by making "measurements" a fundamental part of the 
interpretive scheme, it renders a quantum study of the measurement 
process itself extremely difficult, and this difficulty is what seems to be 
ultimately behind the appearance of conscious observers or classical appa- 
ratus in discussions to which one feels they should be irrelevant. On the 
other hand, it does not provide a good way of talking in physical terms 
about the microscopic world, and as a result one has the odd feeling that 
quantum mechanics can predict the results of measurements but cannot say 
precisely what it is that is being measured. 

In the less agnostic approach of yon Neumann it is possible to say 
something about what is going on (in a statistical sense) in a closed system 
between measurements by using the wave function to calculate probabili- 
ties in the usual way. The situation is a little odd in that the result of an 
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ideal measurement tells one the state of a system right after the measure- 
ment, but nothing about the state just before. In addition the procedure 
does not make it possible to calculate correlations between states of affairs 
at several different times inside a closed system. 

These limitations can be understood from the consistent history per- 
spective as reflecting what is in effect a regulatory principle which, while 
admitting a much wider class of events than the more agnostic approach, is 
still limited to cases in which consistency is "automatically" satisfied: 
namely, the standard statistical interpretation applied to histories of the 
form (2.23), where D represents the state of the system just after the last 
measurement (i.e., t o is the time the system became isolated). The peculiar 
temporal asymmetry is essential, for were there any way in which measure- 
ments at the end of the time interval during which the system is closed 
could give the same sort of information as those at the beginning, the stage 
would be set for the sort of problem discussed in Section 4, which the 
orthodox interpretation is not equipped to handle. 

In this connection it may be of interest to note that Aharonov e ta / .  (9) 
reached the conclusion that there is equal justification for adopting the 
opposite temporal convention as von Neumann, with a measurement 
indicating the state of the system just before instead of just after the 
measurement, and concluded that this was good grounds for not supposing 
that a quantum system can be described by a unique wave function, as 
assumed by quantum orthodoxy. We completely concur with this; see 
Section 3.3. 

In summary, despite very important differences in approach and 
outlook, the orthodox and consistent history approaches seem to be basi- 
cally compatible, with the latter providing a number of insights into the 
successes and conceptual difficulties of the former, while at the same time 
getting rid of some of the less satisfactory philosophical conclusions which 
orthodoxy sometimes seems to imply (temporal asymmetry, need for con- 
scious observers), but with which the orthodox themselves have never been 
very content. But, equally important, the consistent history approach goes 
well beyond the orthodox interpretation by providing a much more general 
regulatory principle which makes possible a greatly increased number of 
precise statements about events in the microscopic domain, in a controlled 
and sensible way. The price for this is that one must pay attention to the 
consistency condition and questions of compatibility, as these are not 

automatically fulfilled. But since the need to pay attention to these arises 
precisely from those features of quantum mechanics which seem the least 
intuitive in comparison with classical mechanics, the extra effort may 
actually lead to a clearer understanding of what quantum mechanics is all 
about. 
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7.2. Closed Systems 

7,2.1. "For All Practical Purposes." One approach to resolving 
the quantum measurement problem (Section 7.1) is to assert that in suitable 
cases, in particular when I represents a macroscopic measuring device (or 
devices), the grotesque wave function, for the combined system I + S, 
which results from a measurement of S by I [e.g., (3.3)] can be collapsed 
into a corresponding density matrix [e.g., (3.21)] "for all practical pur- 
poses": probabilities of subsequent events can be calculated using either the 
wave function or the density matrix, and the results will be essentially the 
same. Arguments to this effect have been given by Gotffried, (~~ by Cini (l~l 
and his collaborators, and no doubt by others, 

We shall not discuss the question as to whether, and if so in what 
fashion, the proposal under discussion actually resolves the measurement 
problem. Of greater interest from the standpoint of consistent histories is 
that arguments of this type can be understood as arguments for the 
consistency of certain classes of histories. Replacing the wave function ~ by 
the corresponding density matrix amounts to the substitution 

..__> a c~ I~)(~l ~ E r  bk)(~lE~ (7.2) 
c~ 

where the projections Eft, a = 1, 2 . . . .  , correspond to the (macroscopi- 
cally) different physical situations (e.g., which one of several counters 
actually triggers). But the consistency condition (2.14) with E k = 1 is in 
effect the assertion that for the weights of interest the replacement (7.2) 
makes no difference. 

Consistency depends not on a single event but on an entire sequence 
of events, and it is easy to exhibit cases [e.g., using appropriate "grotesque" 
events of the type (3.20)] in which (7.2) is not justified. And, indeed, an 
essential element in the "for all practical purposes" argument is that the 
two sides of (7.2) are indistinguishable for "realistic" physical observables, 
o r  that actual or reasonably conceivable laboratory experiments cannot 
detect the "quantum interference" which distinguishes the wave function 
and the density matrix. 

To the extent that these arguments are valid, they justify in some 
measure the claim made in Section 7.1 that the use of "measurement" in 
the orthodox interpretation can be thought of as a device for selecting 
consistent histories (and thus avoiding a discussion of inconsistent histo- 
ries). They also show that the term "measurement," which is usually not 
very precisely defined in the orthodox approach, probably carries with it 
some implicit connotation of "what can be done in practice"--perhaps 
going well beyond what is practical in the real laboratory, but not too far 
beyond. 
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On the other hand, the consistency condition in the consistent history 
approach is a mathematical one, and makes no reference to laboratory 
practice, now or in the future. The difference which this makes in terms of 
interpretation is illustrated by the fact that at one point in his discussion 
(see the footnote of p. 186 of Ref. 10) Gottfried admits that new experimen- 
tal effects involving quantum interference might make it necessary to 
qualify some of his assertions and thus the interpretive scheme based on 
them. No similar concern affects the consistent history approach, for if 
some clever experimentalist does manage to arrange an event sequence 
which can detect the quantum interference which distinguishes the two 
sides of (7.2), then (by definition!) the corresponding history will be 
inconsistent if it includes the event set [E~], and consequently the consis- 
tent history analysis will refuse to answer the question as to whether or not, 
under these conditions, one of the events E~ actually occurred. 

7.2.2. Probabilities Obtained Directly from the Wave Function. 
An alternative approach to the measurement problem is illustrated in a 
paper by Moldauer, (~2) who takes the attitude that the properties of interest 
for the closed system I + S, where I can include various pieces of appara- 
tus interacting with the system S at several successive times, can all be 
calculated from the wave function ~ for I + S, with its time development 
given by the Schr6dinger equation, without any wave function collapse, by 
using "the rules of quantum mechanics." By the latter he evidently means 
what we call the "standard statistical interpretation" in Section 2.3 applied 
to histories of the type 

D ~ E 1 ~ 1 (7.3) 

where E 1 may involve "microscopic" properties of S, "macroscopic" .prop- 
erties of I, or both, or in fact any property of I +  S which can be 
represented by a projection operator. Note that all histories of this type are 
automatically consistent. 

Our criticism of Moldauer's approach concerns not what it affirms, but 
what it leaves unsaid. Consider, as an example, a sp in- l /2  particle passing 
through four successive spin polarization analyzers, measuring polarizations 
in different directions, at times tl < t 2 < t 3 < t 4. Suppose that at time 
t o < t 1 each of the analyzers is in its "untriggered" state (/j0 for analyzer j) ,  
and that at time tf > t 4 each analyzer is in a state (/j~ for analyzer j )  
indicating the measured polarization. Given this information, is it true that 
at time t2.5, when the particle was between analyzers 2 and 3, the first two 
analyzers were in the states I~ ~ and I~ 2, with a I and a 2 the same as the 
corresponding values at tf, whereas the second two were in the untriggered 
states I ~ and I~ 
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"Clearly yes," comes the ready reply, "given the appropriate construc- 
tion and dynamics of the analyzers." But can this actually be demonstrated 
from a quantum mechanical analysis of the closed system of particles plus 
analyzers, given whatever (quantum not classical) construction and dynam- 
ics the theorist prefers? That is a different matter, and in fact the approach 
which uses only histories of the type (7.3) cannot handle questions of this 
type. Note that it is not enough to calculate probabilities separately for the 
times tz5 and tLfrom the total (uncollapsed) ~p (or equivalently the Heisen- 
berg operator D) at these two times, for the question involves a correlation 
between the two states of affairs. Nor can the question be simply dismissed 
as "meaningless," for it is of the sort an experimental physicist might well 
ask ("Joe, do you think something crazy in the electronics might have 
triggered number 3 just before the particle got there?"), given that real 
experiments are seldom as clean as their gedanken counterparts. 

We suspect that the typical quantum physicist pressed to answer this 
question will proceed by collapsing the wave function at tz5 (or at t I and 
again at t2, etc.) and then using the individual pieces to calculate the future 
course of events, and hence the way they are correlated with the situation 
at t2. 5. With an uneasy conscience if he accepts the orthodox interpretation 
(for the total system of particle plus analyzers is to be thought of as closed 
during the entire time from t o to tf), an easier conscience if he accepts the 
arguments of Section 7.2.1 above--and with joyous abandon if he adopts 
the consistent history perspective (with a promise that the technical issues 
of proving consistency will be treated in a later publication!). In any case, 
the main point is that questions of this sort simply cannot be handled by an 
interpretive scheme which limits itself to (7.3). And as soon as longer 
histories are considered, o f F  is not equal to 1, consistency is not automatic 
and some extension of the standard statistical interpretation must be 
employed. 

The following possibility may occur to some readers and deserves 
comment. Could it be that the Heisenberg operator corresponding to the 
situation at interest at tz5 commutes with the Heisenberg operator corre- 
sponding to the final state of all the analyzers at tf (or "almost" commutes, 
or commutes if it is slightly altered in a way which represents the same 
macroscopic information, etc.) when the two are referred to a common 
reference time? If the answer were "yes," one could employ the "gen- 
eralized standard interpretation," in the terminology of Section 2.3, and 
consistency would no longer be an issue. Although we have no proof, we 
think the correct answer is "no," and the same is true if the Heisenberg 
operator for the initial state replaces that of the final state in the statement 
of the question. For evidence supporting this, see the remarks at the end of 
Appendix C. 
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7.2.3. "Many Worlds." Everett's "relative state" approach (13) to 
quantum interpretation is based on the idea that the wave function of a 
closed system ("the universe") developing in time according to the Schr6- 
dinger equation provides a correct deterministic description of the system. 
When in the course of time the wave function becomes grotesque (in our 
terminology), this is because there has been an actual splitting of the 
original single macroscopic state-of-affairs into two or more distinctly 
different macrostates which simultaneously exist (in some sense), though 
they do not in practice interact with each other. It is claimed by advocates 
of this position that the usual statistical interpretation of quantum theory 
can be generated without any probabilistic hypothesis, simply using the 
Schr6dinger dynamics. (We share the suspicions of Ballentine (J4) and 
Benioff (~5~ that the calculations in support of this thesis actually contain 
implicit probabilistic hypotheses.) 

By contrast, the consistent history interpretation is explicitly probabi- 
listic, has no need to intrepret "grotesque" wave functions in order to 
discuss ordinary events, and in any case denies that the wave function 
provide a description of the universe in anything like the sense claimed by 
Everett. Thus it lacks precisely those features of the Everett interpretation 
which give rise to its most controversial claim: that the universe is in some 
sense continually "splitting" into separate worlds with different macro- 
scopic situations in each one. 

o n  the other hand, a certain "splitting" can occur within the consistent 
histories framework, in the following sense. A simple initial state D can 
lead at some later time to two or more very different macroscopic situations 
each with a significant probability (see Section 3 for an example). There is a 
very analogous phenomenon in classical statistical mechanics. The proba- 
bility distribution in phase space for a system which is initially in a well 
defined but unstable macrostate may at some later time "split" into one 
which represents several very different macrostates, each with a significant 
probability. However, this phenomenon is interpreted either by saying that 
a single system starting in the initial macrostate will at a later time be in one 

of the macrostates which has significant probability (but the theorist, owing 
to his ignorance, cannot say which), or that in an ensemble of systems 
corresponding to the original probability distribution, some will later be 
found in one macrostate and some in another. In neither case does one 
think of an ind iv idual  system as somehow "split" between different macros- 
rates. 

We grant that quantum probabilities do not behave in all respects like 
their classical counterparts. But given that the consistency condition selects 
families of histories whose probabilities satisfy the classical rules (in a 
mathematical sense), it seems most natural to interpret the "splitting" 
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which takes place inside a consistent family--this seems to be the situation 
which Everett has in mind-- in  terms of the classical analogy, or at least 
there seems to be no reason not to do so. 

APPENDIX A: WEIGHTS W A S  PROBABILITIES 
FOR CONSISTENT HISTORIES 

In what follows we restrict our attention to a single family of histories 
of the form (2.6), with D, F, and the different event sets held fixed. There 
are then a total of 

l~ [ 2Mk- 1] (A1) 
k ~ l  

separate histories in the family, including the trivial history in which every 
E k is equal to 1. Let us call those histories in which for each k E k is one of 
the E~ [see (2.4)] "elementary" histories, and the other cases "compound" 
histories. 

When dealing with classical probabilities (that is, the subject discussed 
in the usual textbook on probability theory, Feller (16) for example), the 
following rule applies. Let A and B be two mutually exclusive events [using 
"event" in the probabilistic sense, (see p. 8 of Ref. 16), which is more 
general than the sense of Section 2.1] and C any other event. Then the 
probability of the event (A V B) A C, "A or B, and C," is the sum of the 
probabilities of A A C and B A C. In the quantum case the Eft for fixed k 
and different c~ corresponds to mutually exclusive events, as the product 
(2.5) vanishes for a v s ft. Thus if the classical rule just discussed is to apply 
to the histories making up the family we are discussing, we are naturally led 
to the demand that 

P ( E  1A . . .  E k/~ . .  �9 En) -~- Z ' P ( E I  A """ Eft A " ' '  En) (A2) 

where P stands for the probability of the history, and just as in (2.14) and 
(2.15), the sum on the right is over those a corresponding to the projections 
which make up E k on the left. 

Provided (12) holds for all k and all possible choices of E 1 , E  2, 

. . . .  E, ,  it is equivalent to the demand that 

P ( E ~ A  . - . E , ) = E ' ~ - ~ j . . - ~ _ f P ( E ~ , A E ~ , / ~ . . . E 2 o  ) (13)  
I t~2 ~n 

hold for all possible choices of E 1 , E z . . . .  , En, with the sum over c~j on the 
right side restricted to those projections which make up Ej on the left. That 
is to say, a compound history may be thought of as composed of a set of 
mutually exclusive elementary histories, and its probability is a sum of the 
probabilities of the latter. A consistent family of histories is then one for 
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which we can make the identification 

P(E IA . . .  En)= W(E ,A  . . .  EnID A F) (A4) 

where W is given by (2.12), for all histories belonging to the family, and 
have (A2), which means (2.14), satisfied. The fact that (A3) holds for this 
family is what justifies treating the corresponding probabilities by the 
classical rules when computing conditional probabilities, etc. 

An alternative approach might be to make the identification (A4) for 
elementary histories but not for compound histories, and then define the 
probability of the latter using (A3). Provided the sum of the probabilities of 
all the elementary histories is 1, which will automatically be the case if 
F =  1 (or D = 1), the resulting structure can, of course, be treated by 
classical rules. [And one can, if necessary, introduce a constant factor on 
the right side of (A4) to ensure that probabilities of the elementary histories 
sum to one,] However, this approach has the disadvantage that unless the 
family is consistent, the identification (A4) will not hold for all of the 
compound histories. In particular, the probability of, say, 

E 1 A I A  . . .  A1 (A5) 

which would normally be interpreted simply as "E~ occurred at time t~," 
will in general depend on the particular (inconsistent) family of histories in 
which this event is embedded. 

Checking the consistency condition (2.14) is a lengthy task for any but 
the shortest and simplest histories. This task is made slightly easier using 
the alternative (2.19), which we now derive. Let P and Q be any two 
bounded Hermitian operators, at least one of which is of trace class, and 
for B and C any two bounded operators, define 

<B, C) = Re Tr[PB~QC] 

= �89 Tr[ PBtQC ] + �89 Tr[ PCtQB] (A6) 

where B* is the Hermitian conjugate of B. It is at once evident that 

(B, C) = (C ,B)  (A7) 

(A + B, C~ = (A, C) + (B, C) (A8) 

Now let 
A 

P = e\+,~k+2.. .  ~ o ~ . . . .  Ek+2Ek+, 
(A9) 

A A 

e = ~ k - , ~ - 2 . . .  ~ , b ~ l , . .  Ek_2E~_, 
and note that (2.14) is equivalent to 

* A / A s 

= , E~ ) (A10) 

Upon writing out the left side using (2.15), (A7), and (A8), one sees that 
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(A10) will be true provided 

= 0 (A1 l) 

for all a </3.  On the other hand, if (A11) does not hold for some a </3 ,  
(A10) will be violated for E~ equal to E :  + E~.  Of course (A11) is the same 
as (2.19). 

APPENDIX B: ARGUMENT THAT AI (SECTION 3) DOES NOT 
COMMUTE WITH D OR Ka§ 

If we use t 1 as the reference time, Zll = A j  and /} = D 1, with D 1 
defined in (3.8). But then, using (3.4), we see that 

A1D,'I" 1 = qf~/~[2, DIA,'t '  I = ' t ' , / 2  (B1) 

so that the two operators do not commute. 
The argument that Al does not commute  with /~a + is more compli- 

cated. Consider a wave function (not produced by scattering!) 

= ~, C a C b (B2) 

at time t), where ~1 is a wavepacket located in a small region centered on 
the boundary of A 1, chosen so that as time advances, it will spread in 
different directions with a pattern yielding destructive interference (a low 
amplitude) in that portion moving towards the counter C a. By an appropri- 
ate choice of the initial wavepacket we can also arrange that A itS1 does not 
suffer that same destructive interference and will have a much larger 
amplitude for that portion of the wave moving toward C o . Consequently 
this second wavepacket leads to a larger probability for counter a in the 
triggered state at time t2: 

<~[A, U( t] , t2)ga + U( t2, t,)A][~> 

> (~[ V ( t , ,  t2)Ka+U(t2, tl)l~) (B3) 

However, choosing the reference time t r as tl, we can rewrite this as 

On the other, hand, i r A  t and /(a + were to commute  we would have the 
result, with A'~ = 1 - A l : 

- -  A t A § A !  - -  

= (~ l~ , / (a+~l lW)  + (xIrIAIK a A,Iq, ) (B5) 

in contradiction with (B4). 
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Note that this argument does not depend on precisely which operator 
is employed for /Ca+; any reasonable choice will do. On the other hand 
there is clearly something rather artificial about a construction which 
depends on the precise boundary of the region A I . The moral to be drawn 
from this, in our opinion, is that the demand for commutativity of the 
Heisenberg operators, referred to the same reference time, for two events 
taking place at different times is neither physically sensible nor mathemati- 
cally simple. The consistency condition appears to be preferable in both 
respects. 

APPENDIX C: DETAILS OF CONSISTENCY AND PROBABILITY 
CALCULATIONS FOR SECTION 4 

It is convenient to use t 2 as the reference time t r, and the following 
abbreviations: 

[1)  = 7Z+X +, 12)  = 6 z + x  - 

13) = 7 Z - X  +, 14) = 8 Z - X -  (C1) 

for the states, mutually orthogonal and normalized, which occur in (4.6): 

lff'2) = �89 + [2) + [3) -14)}  (C2) 

Note that as D corresponds to "I" o at t o, 

= 1q'27<~'21 (C3) 

By using (4.3) and (4.1), one can find the counterparts of the states 
(C1) at time t t and use these to calculate matrix elements of A1 and F1. For 
example, 

A~I l> = u(t2, t)a, U(t, t2)l 1) = U(t2, t,)[AtyZ + X] 

= U(t2,tl)[aZ+X]/~/2 = �89 + [2)} (C4) 

The result is 

where 

and 

while, of course, 

A, = �89 + �89 {I1)(21 + 12)(11 + 13)(41 + 14)431} (c5) 

~, = II><l[ + 13)(3[ (C7) 

/~= F =  I1)(1[ (C8) 

4 
1= ~ Ij)(j[ (C6) 

j = l  
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S i n c e  1~1 and F commute, the consistency of (4.8) is automatic. To 
check the consistency of (4.7), we evaluate (2.20), noting that 

2{]F,~ = �88 (11)(11- [2)(21 + {1)(2[-  12)(1[} (C9) 

and thus 

Tr[ A,/}a{/~] = ('I'2IA',PA ~ j'I%> = 0 (CI0) 

Hence the conditional probabilities (4.9) and (4.10) are equal to the 
corresponding weights W in (2.12). The latter can be expressed in terms of 

Tr[/)/3] = I/4 = Tr[l~f)l~F] = Tr[Afl)A,/~] (CI I) 

where the traces are evaluated in the same manner as in the consistency 
check. 

In considering the histories (4.14) and (4.15), we note that Al.1 = fiXl 
and 1~.1 = F 1. What distinguishes the two cases is the order of the operators 
inside the traces. In checking the consistency of (4.14) using (2.20), we note 
that the cases in which GI or Gl.l are equal to 1 correspond with the 
histories (4.8) and (4.7), whose consistency has already been checked. The 
remaining cases are easily taken care of by noting that 

~ r  A AA"  ^ A AA  

F H F =  0 = FF~.I, F, . ,F = F =  FF,.~ (C12) 

which also makes it evident that the probabilities in (4.9) and (4.16) are the 
same. On the other hand, 

*~ A A A A A 

Tr[A,. ,F,DF~A]. ,F] = 1/16 (C13) 

is nonzero and real, so (4.15) cannot be consistent. 
The above calculations using a four-dimensional vector space are 

obviously a drastic oversimplification in terms of what should in principle 
be employed for "realistic" apparatus. We do not, on the other hand, think 
that they are misleading. In this connection, we note one respect in which 
they can easily be improved. As pointed out in Section 5, an idealized 
measuring instrument needs a minimum of two states. Since we are consid- 
ering two instruments plus a spin- l /2  particle, the vector space should be 
eight dimensional instead of four, which is to say we should supplement 
(Cl) with 

(5> = y Z + X - ,  [6) = 8 Z + X  + 
[7> = V Z - X - ,  18> = 6 z - x  + (C14) 

and augment (4.3) by adding the transformations 

r 2 - ,  r x - ,  aY --, ax + (c15) 

where X and .I~ are the two possible states of the S x analyzer before the 
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particle arrives. Similarly, to (4.2) one should add the transformations 

aZ---> a Z  - ,  flZ---> ~ Z  + (C16) 

The net result of repeating the previous calculations in this enlarged 
space is that one gets precisely the same results. The reason is that Al, i~l, 
/), and /~ have no matrix elements connecting the subspace spanned by 
(CI) and that spanned by (C14), and the latter is annihilated b y / ) ,  which 
enters all of the traces considered in these histories. 

It is also possible, using this eight-dimensional space, to examine the 
Heisenberg operators corresponding to events which make reference only to 
states of the analyzers and not to the spin of the particle. This is a useful 
exercise if for no other reason than that one's intuition about the behavior 
of such operators is often defective. Among the results which emerge--we 
leave the argument as an exercise to the reader--is that the Heisenberg 
operators for Z X  at time t o and Z +X + at time t 2 do not commute when 
referred to a common reference time (t 2 is a convenient choice). 

APPENDIX D: DERIVATION OF (5.17) AND (5.42) 

We begin with (5.17). It is convenient to write the argument of the 
trace on the left side in the "long" form (2.11), which is, letting t i = t/, 

JiVUc( tf , tn)E,  Uc( tn , tn- i) 

. . .  u (tm+, t0)[a | D] re(to, 

. . .  GrnUc(l m , t m + l ) G m + l . . .  G, Uc(t . ,tf)[ 1 | F] (D1) 

In view of the time ordering and of (5.18), all the U~ can be replaced by U 
except for the cases where one argument is tm and one is tin+ l, where (5.5) 
and (5.6) must be used. With the help of (5.7), (5.8), and (5.15), and after 
shifting the operators on I to the left side, we obtain 

E E 

@ I U( t f  ,tn) En . . . Em+ l U( tm+ I ,"r)ATU('r, tm)Em 

. . .  U ( t , ,  t o ) D U ( t  o , t ,)  . .  . G m U ( t ~ ,  r )A f lU(T ,  tin+ 1)Gin+, 

. . .  G, U ( t , ,  {r)F] (D2) 

Now the trace Tr c of each summand in (D2) can be written as a product of 
the trace tr over I of the operator product inside parentheses multiplied by 
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the trace Tr over S of the operator product inside square brackets. Using 
the definitions (5.9), (5.13), and (5.14), together with the orthonormality of 
the ~ ,  one obtains 

tr(rrs~ds -l~) = (~r[s~j~~176 Y) 

= Gs , (D3) 

and inserting this in the double sum yields the "long form" of the trace on 
the right side of (5.17). 

The same approach will work for (5.42). When the argument of Tr C is 
written in the "long form" and reexpressed using (5.30) to (5.35), the result 
which corresponds to (D2) is 

E E " ' '  • 2 "'" E(r• 'r;  2" . ' r f"s f" . .  .s2&s~'ds;r's2r2. . .G -~) 

|  A~" . . .  e k . . . A ~ , . . .  D . . . A ~ ' , . . .  G k . . . A 2 . . .  F] 

(D4) 

where the operator product in square brackets is similar to that in (D2), 
except that there are v A's on each side of D, each inserted at the position 
which maintains the proper time sequence, with (of course) the appropriate 
U operators. The trace Trc of each summand in (D4) factors into a product 
of the trace over I of the operator product in parentheses and the trace over 
S of the operator product in square brackets; the former in turn factors 
into traces over the individual I~ of the form 

tru(rf,sf,4s2 ~.) = 6%e 8%r,, (D5) 

Inserting these in the multiple sum yields the right side of (5.42). 
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